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Preface

Computer Science Logic (CSL) is the annual conference of the European Associ-
ation for Computer Science Logic. The conference series started as a programme
of International Workshops on Computer Science Logic, and then from its sixth
meeting became the Annual Conference of the EACSL. The 15th Annual Confer-
ence (and 20th International Workshop), CSL 2006, took place during September
25—29, 2006. It was organized by the Department of Computer Science, Univer-
sity of Szeged. Previous CSL conferences were held in Karlsruhe (1987), Duis-
burg (1988), Kaiserslautern (1989), Heidelberg (1990), Bern (1991), San Miniato
(1992), Swansea (1993), Kazimierz (1994), Padernborn (1995), Utrecht (1996),
Aarhus (1997), Brno (1998), Madrid (1999), Fischbachau (2000), Paris (2001),
Edinburgh (2002), Vienna (2003), Karpacz (2004) and Oxford (2005).

The suggested topics of the conference included automated deduction and in-
teractive theorem proving, constructive mathematics and type theory, equational
logic and term rewriting, automata and formal logics, modal and temporal logic,
model checking, logical aspects of computational complexity, finite model theory,
computational proof theory, logic programming and constraints, lambda calculus
and combinatory logic, categorical logic and topological semantics, domain the-
ory, database theory, specification, extraction and transformation of programs,
logical foundations of programming paradigms, verification of security protocols,
linear logic, higher-order logic, nonmonotonic reasoning, logics and type systems
for biology.

In response to the Call for Papers, a total of 132 abstracts were submitted
of which 108 were accompanied by a full paper. The International Programme
Committee accepted 37 papers for presentation and inclusion in these proceed-
ings. The Programme Committee invited lectures from Martin Escardé (Birm-
ingham), Paul-André Melliés (Paris), Luke Ong (Oxford), Luc Segoufin (Orsay)
and Mirostaw Truszczynski (Lexington, KY).

The Ackermann Award is the EACSL Outstanding Dissertation Award for
Logic in Computer Science. The 2006 Ackermann Award was presented to Balder
ten Cate and Stefan Milius at the conference.

These proceedings contain the texts of 4 invited lectures and the 37 accepted
papers and the report of the Ackermann Award Committee whose members were
J. Makowsky (President of EACSL), D. Niwinski (Vice-President of EACSL), S.
Abramsky, B. Courcelle, E. Griadel, M. Hyland, and A. Razborov.

I would like to thank everybody who submitted a paper to the conference
and all members of the Programme Committee and their subreferees for their
excellent cooperation in the evaluations of the papers. Finally, I would like to
thank my colleagues Zsolt Gazdag, Szabolcs Ivan and Zoltdn L. Németh for their
technical assistance during the preparation of these proceedings.
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The conference was sponsored by the Department of Computer Science, Uni-
versity of Szeged, the Hungarian Academy of Science, the Fund for Research and
Education in Informatics, the Fund for Szeged and the Nokia Hungary, Ltd.

Szeged, July 2006 Zoltan Esik
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Functorial Boxes in String Diagrams*

Paul-André Mellies

Equipe Preuves, Programmes, Systémes
CNRS — Université Paris 7 Denis Diderot

Abstract. String diagrams were introduced by Roger Penrose as a
handy notation to manipulate morphisms in a monoidal category. In
principle, this graphical notation should encompass the various pictorial
systems introduced in proof-theory (like Jean-Yves Girard’s proof-nets)
and in concurrency theory (like Robin Milner’s bigraphs). This is not
the case however, at least because string diagrams do not accomodate
bores — a key ingredient in these pictorial systems. In this short tuto-
rial, based on our accidental rediscovery of an idea by Robin Cockett and
Robert Seely, we explain how string diagrams may be extended with a
notion of functorial box depicting a functor transporting an inside world
(its source category) to an outside world (its target category). We expose
two elementary applications of the notation: first, we characterize graph-
ically when a faithful balanced monoidal functor F': C — D transports
a trace operator from the category D to the category C, and exploit
this to construct well-behaved fizpoint operators in cartesian closed cat-
egories generated by models of linear logic; second, we explain how the
categorical semantics of linear logic induces that the exponential box of
proof-nets decomposes as two enshrined boxes.

1 Introduction

The origins. Although the process was already initiated in the late 1960s and
early 1970s, very few people could have foreseen that Logic and Computer Sci-
ence would converge so harmoniously and so far in the two areas of proof theory
and programming language design. Today, about fourty years later, the two re-
search fields are so closely connected indeed, that any important discovery in one
of them will have, sooner or later, an effect on the other one. The very existence
of the conference Computer Science Logic bears witness of this important and
quite extraordinary matter of fact.

The convergence would not have been as successful without the mediation
of category theory — which made an excellent matchmaker between the two
subjects, by exhibiting the algebraic properties underlying the mathematical
models (or denotational semantics) of both proof systems and programming
languages. At the end of the 1970s, a few people were already aware that:

* Research partially supported by the ANR Project INVAL “Invariants algébriques
des systémes informatiques”.

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 1-30, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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P.-A. Mellies

— intuitionistic logic as articulated in proof theory,
— the A-calculus as implemented in programming languages,
— cartesian closed categories as investigated in category theory

are essentially the same object in three different guises — see for instance Jim
Lambek and Phil Scott’s monograph [34]. The idea circulated widely in the
community, so that a few years later, in the mid-1980s, the following trilogy of
concepts has become prominent:

Cartesian-Closed
Categories (\

Intuitionistic

A-calculus < Logic

0y

A linear world opens. The year 1985 was then a turning point, with the
discovery of linear logic by Jean-Yves Girard. This single discovery had the quite
extraordinary effect of refurbishing every part of the subject with new tools, new
ideas, and new open problems. In particular, each of the three concepts above was
reunderstood in a linear fashion. In effect, Jean-Yves Girard [18,19] introduced
simultaneously:

1. a sequent calculus for linear logic, which refines the sequent calculus for

Intuitionistic Logic defined by Gerhard Gentzen in the 1930s — in particular,
every derivation rule in intuitionistic logic may be translated as a series of
more “atomic” derivation rules in linear logic,

. a graphical syntax of proofs, called proof-nets, which refines the term syntax

provided by A-terms — in particular, every simply-typed A-term may be
translated as a proof-net, in such a way that a (-reduction step on the
original A-term is mirrored as a series of more “atomic” cut-elimination steps
in the associated proof-net,

. a denotational semantics of linear logic, based on coherence spaces and

cliques, which refines the model of dI-domains and stable functions defined by
Gérard Berry [7] for the purely functional language PCF, a simply-typed A-
calculus extended with a fixpoint operator, a conditional test on booleans,
and the main arithmetic operations. People like Robert Seely [45], Yves La-
font [31] and Francois Lamarche [33] realized very early that the construction
amounts to replacing a cartesian closed category (of dI-domains and sta-
ble maps) by a monoidal closed category (of coherence spaces and cliques)
equipped with a particular kind of comonad to interpret the exponential
modality (noted !) of linear logic.

From this followed a new and refined “linear” trilogy, which became prominent
in the early 1990s:
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Monoidal-Closed
f-) Categories (\
M

A puzzle in string diagrams. 1 started my PhD thesis exactly at that time,
but in a quite different topic: Rewriting Theory, with Jean-Jacques Lévy at IN-
RIA Rocquencourt. Although I devoted all my energies to exploring the arcanes
of my own subject, this culminating in [38,39], I was astonished by the elegance
of linear logic, and by the extraordinary perspectives opened by its discovery.
Indeed, our emerging field: the semantics of proofs and programs, was suddenly
connected to something like mainstream mathematics: linear algebra, represen-
tation theory, low-dimensional topology, etc.

My interest was reinforced after a discussion with Yves Lafont, who revealed
suddenly to me that multiplicative proof-nets, and more generally, his own notion
of interaction nets [32] are specific instances of a graphical notation invented by
Roger Penrose [43,44] to manipulate morphisms in monoidal categories; and that
this notation is itself connected to the works by Jean Bénabou on bicategories [4],
by Ross Street on computads [47], and by Albert Burroni on polygraphs and
higher-dimensional rewriting [13]. Then, André Joyal and Ross Street published
at about the same time two remarkable papers [27,28] devoted to braided mo-
noidal categories and string diagrams. This elegant work finished to convince
me... Indeed, I will start this tutorial on string diagrams by giving a very brief
and partial account of the two articles [27,28] in Section 2.

Now, it is worth recalling that a proof-net is called multiplicative when it
describes a proof limited to the multiplicative fragment of linear logic. Since
multiplicative proof-nets are instances of string diagrams... there remains to
understand the “stringy” nature of gemeral proof-nets — that is, proof-nets
not limited to the multiplicative fragment. A serious difficulty arises at this
point: general proof-nets admit exponential bores which depict the action of
the exponential modality ! on proofs, by encapsulating them. Recall that the
purpose of the modality ! is to transform a “linear” proof which must be used
exactly once, into a “multiple” proof which may be repeated or discarded during
the reasoning. So, by surrounding a proof, the exponential box indicates that
this proof may be duplicated or erased. The trouble is that, quite unfortunately,
string diagrams do not admit any comparable notion of “box”. Consequently,
one would like to extend string diagrams with boxes... But how to proceed?

The lessons of categorical semantics. Interestingly, the solution to this
puzzle appears in the categorical semantics of linear logic, in the following way. In
the early 1990s, Martin Hyland and Gordon Plotkin initiated together with their
students and collaborators Andrew Barber, Nick Benton, Gavin Bierman, Valeria
de Paiva, and Andrea Schalk, a meticulous study of the categorical structure
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defining a model of linear logic [6,8,5,9,3,23]. The research was fruitful in many
ways. In particular, it disclosed a common pattern behind the various categorical
axiomatizations of linear logic. Indeed, every different axiomatization of linear
logic generates what appears to be a symmetric monoidal adjunction

M L L (1)

between a symmetric monoidal closed category IL and a cartesian category M.
This important notion was introduced and called a Linear-Non-Linear model
by Nick Benton [5,37]. Here, it will be simply called a linear adjunction. The
notations L and M are mnemonics for Linearize and Multiply. Intuitively, a
proof of linear logic is interpreted as a morphism in the category L or in the
category M, depending whether it is “linear” or “multiple”. Then,

e the functor M transports a “linear” proof into a “multiple” proof, which
may be then replicated or discarded inside the cartesian category M,

e conversely, the functor L transports a “multiple” proof into a “linear” proof,
which may be then manipulated inside the symmetric monoidal closed cat-
egory L.

To summarize: there are two “worlds” or “universes of discourse” noted L. and M,
each of them implementing a particular policy, and two functors L and M de-
signed to transport proofs from one world to the other.

An early illustration. Interestingly, this pattern traces back to the very origin
of linear logic: coherence spaces. Indeed, Max Kelly notices [25,24] that what one
calls “symmetric monoidal adjunction” in (1) is simply an adjunction L - M in
the usual sense, in which one requires moreover that the left adjoint functor L
transports the cartesian structure of M to the symmetric monoidal structure of L.
The detailed proof of this fact appears in my recent survey on the categorical
semantics of linear logic [40]. Such a functor L is called strong monoidal in the
litterature — the precise definition is recalled in Section 4. Now, the practiced
reader will recognize that the linear adjunction (1) describes precisely how the
category M of dI-domains and stable functions is related to the category L of
coherence spaces and cliques. Recall indeed that a coherence space is simply a
reflexive graph, and that the functor L transforms every dl-domain D into a
coherence space L(D) whose nodes are the elements of D, and in which two
nodes x € D and y € D are connected by an edge (that is, are coherent)
precisely when there exists an element z € D such that x < z > y. Since the
tensor product of coherence spaces is the same thing as the usual product of
graphs, the equality follows:

L(DxE) = L(D)®L(E).

Although one should check carefully the conditions of Section 4, it is quite im-
mediate that the functor L is strict monoidal — hence strong monoidal. At this
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point, there only remains to define a right adjoint functor M to the functor L in
the way exposed in [18,19,1] in order to find oneself in the situation of a linear
adjunction (1).

The exponential modality decomposed. Although the pattern of linear ad-
junction (1) looks familiar from a semantic point of view, it appears quite unex-
pected from the point of view of proof-nets — because the exponential modality !
is not a primitive anymore: it is deduced instead as the comonad

| = LoM (2)

generated by the linear adjunction (1) in the category L. In other words, the
exponential modality ! factors into a pair of more atomic modalities L and M.
Nick Benton [5] mirrors this semantic decomposition into a logic and a term
language, which he calls Linear-Non-Linear logic. The decomposition may be
transposed instead into the pictorial language of proof-nets: it tells then that
the exponential box should decompose into a pair of “boxes” interpreting the
two modalities L and M. This pictorial decomposition of the box ! should follow
the principles of string diagrams, and be nothing more, and nothing less, than
a handy graphical notation for the categorical equality (2).

Functorial boxes. Now, the two modalities L and M in the linear adjunc-
tion (1) are monoidal functors between the monoidal categories L. and M —
where the monoidal structure of M is provided by its cartesian structure. Hence,
monoidal functors are precisely what one wants to depict as “boxes” in string
diagrams. The task of Sections 3 and 4 is precisely to explain how monoidal
functors are depicted as functorial bozes in string diagrams — and what kind of
box depicts a lax, a colax or a strong monoidal functor. I rediscover in this way,
ten years later, an idea published by Robin Cockett and Richard Seely [15] in
their work on linearly distributive categories and functors. See also the related
article written in collaboration with Rick Blute [11]. Obviously, all the credit for
the idea should go to them. On the other hand, I find appropriate to promote
here this graphical notation which remained a bit confidential; and to illustrate
how this handy notation for monoidal functors may be applied in other contexts
than linear logic or linearly distributive categories.

So, I will discuss briefly in Section 7 how the exponential box ! of linear
logic decomposes into a functorial box M enshrined inside a functorial box L.
Categorical semantics indicates that the functor L is strong monoidal whereas
the functor M is lax monoidal — see Section 4 for a definition. Consequently,
the two functorial boxes are of a different nature. One benefit of using string
diagrams instead of proof-nets is that the graphical notation mirrors exactly the
underlying categorical semantics. In particular, I will illustrate how the typical
cut-elimination steps in proof-nets are themselves decomposed into sequences
of more atomic rewrite steps in string diagrams. Each of these rewrite steps
depicts a step in the proof of soundness of the categorical semantics of linear
logic implemented by Linear-Non-Linear models.
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Trace operators in linear logic. In order to interpret recursive calls in a
programming language like PCF, one needs a cartesian closed category equipped
with a fixpoint operator. Recall that a parametric fixpoint operator Fix in a
cartesian category C is a family of functions

Fix{ : C(AxU,U) — C(A4,U)
making the diagram below commute

FixQ (f)

A

A !

v ida xFixY
Ax A n A(f)>A><U

for every morphism f : A x U — U. The diagram expresses that Fixg is a
parametric fixpoint of the morphism f. A fixpoint operator should also satisfy
a series of naturality properties described in Theorem 3.1 of [20].

A few years ago, Martin Hyland and Masahito Hasegawa [20] have pointed
out independently that the notion of fixpoint operator is closely related to the
notion of ¢race introduced by André Joyal, Ross Street and Dominic Verity [29]
in the context of balanced monoidal categories — a mild refinement of braided
monoidal categories, see Section 5 for a definition of trace. More precisely, Martin
Hyland and Masahito Hasegawa show that a trace in a cartesian category C is the
same thing as a particularly well-behaved notion of parametric fixpoint, see [20].

Now, it appears that in many existing models of linear logic, formulated here
as a linear adjunction (1), the symmetric monoidal closed category L has a trace.
This happens typically when the category L is autonomous, like the category Rel
of sets and relations (with the usual product of sets as tensor product) or variants
recently studied by Nicolas Tabareau [49] of the category of Conway games
introduced by André Joyal [26]. An interesting question thus is to understand
when a trace in the category L may be transported to a trace, and thus a fixpoint
operator, in the cartesian category M.

A nice example, suggested to me by Masahito Hasegawa, shows that this is not
possible in general. Consider the powerset monad T on the usual category Set
of sets and functions: the monad associates to every set X the set T X of its
subsets. The monad T induces an adjunction

L

Set 1 Rel (3)
M
between the category Set and its kleisli category Setr — which is isomorphic to

the category Rel of sets and relations. The lifting monad T being commutative,
or equivalently, symmetric monoidal (in the lax sense), the adjunction (3) is
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symmetric monoidal, see [30]. In particular, the kleisli category Setr inherits
its monoidal structure from the cartesian structure of the category Set; and the
functor L which sends the category Set to the subcategory of functions in Rel,
is strict monoidal. So, the adjunction (3) is linear, and defines a model of linear
logic, in which the category L. = Rel is autonomous, and thus has a trace. On
the other hand, there is no fixpoint operator, and thus no trace, in the cartesian
category Ml = Set.

At this point, it is worth noticing that the functor L is faithful in the typ-
ical models of linear logic, because the category M is either equivalent to a
subcategory of commutative comonoids in L, or equivalent to a subcategory of
coalgebras of the comonad ! = L o M — in particular to the category of free
coalgebras when M is the co-kleisli category associated to the comonad. Another
equivalent statement is that every component of the unit 1 of the monad Mo L is
a monomorphism. This observation motivates to characterize in Section 6 when
a faithful balanced monoidal functor

C P osp (4)

between balanced monoidal categories transports a trace in the target category D
to a trace in the source category C. The proof of this result is perfectly elemen-
tary, and offers a nice opportunity to demonstrate how string diagrams and
functorial boxes may be manipulated in order to produce purely diagrammatic
proofs. Of course, the result specializes then to the strong monoidal functor L
involved in a typical model of linear logic. This enables to transport a trace in
the category L to a well-behaved parametric fixpoint operator in the category M
in several models of interest — including the relational model of linear logic, and
the categories of Conway games mentioned earlier.

String diagrams in computer science and logic: a few perspectives. My
ambition in writing this elementary tutorial is to demonstrate in a few pictures
that categorical semantics is also of a diagrammatic nature. Proof-nets were
invented by a genial mind, but they remain an ad’hoc and slightly autarchic
artefact of proof-theory. On the other hand, string diagrams flourished in the
middle of algebra. Categorical semantics is precisely here to connect the two
subjects, with benefits on both sides: logic and computer science on the one
hand, categorical algebra on the other hand.

Obviously, much work remains to be done in the area. In many respects, the
three concepts appearing in the first trilogy (intuitionistic logic, A-calculus, carte-
sian closed categories) were more tightly connected in the mid-1980s than the
three concepts appearing in the second trilogy (linear logic, proof-nets, monoidal
closed categories) are connected today.

The article published recently by Maria Emilia Maietti, Paola Maneggia, Va-
leria de Paiva, Eike Ritter [37] is extremely clarifying from that point of view:
it is established there that the Linear-Non-Linear term language introduced
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by Nick Benton [5] is the internal language of the category of linear adjunc-
tions (1). Note that the idea of reformulating this result using string diagrams
(extended with functorial boxes) instead of a term language motivates implicitly
the discussion in Section 7. Another key work in the area was published by Rick
Blute, Robin Cockett, Robert Seely and Todd Trimble [12] about coherence in
linearly distributive categories. The article describes the free linearly distributive
category and the free x-autonomous over a given category C, using equations on
a variant of Jean-Yves Girard’s multiplicative proof-nets.

I am confident that a broader picture will emerge at some point from the
current work at the interface of linear logic and categorical algebra. In the near
future, we will certainly find natural to extract a language or a logic as the
internal language of a particular categorical pattern, similar to the linear ad-
junction (1) and possibly formulated as a 2-dimensional version of Lawvere the-
ory [35,47,13,10,46]. The languages would be expressed alternatively with string
diagrams, for handy manipulation, or with terms, for easy implementation. The
resulting trilogy of concepts:

Categorical
f" Semantics (\
. ) Logic and
<
String Diagrams Language

would be broader in scope and more tightly connected than the current one.
It would also integrate the algebraic and pictorial systems formulated for con-
currency theory, like Robin Milner’s bigraphs [41]. The existing categorical se-
mantics of action calculi [22,42,2] indicate a close relationship with the notion
of fibred functor between fibred categories, and with the models of linear logic
based on linear adjunctions (1).

I should conclude this introduction by observing that functorial boxes in string
diagrams offer a handy 2-dimensional notation for what could be depicted al-
ternatively using Ross Street’s 3-dimensional surface diagrams [48]. Surface di-
agrams are more perspicuous in many ways: for instance, a functor is depicted
there as a string, instead of a box. However, the two notations are not extremely
different: the practiced reader will easily translate the string diagrams appearing
in the tutorial into surface diagrams — in which strings are replaced by ribbons,
in order to accomodate the twists. In that respect, this tutorial should be also
understood as incentive to carry on in the diagrammatic path, and to depict
proofs as surface diagrams. The resulting 3-dimensional notation, added to the
observation [16] that a x-autonomous category is essentially the same thing as
a Frobenius algebra in the autonomous category of small categories and “pro-
functors” or “distributors” — will certainly offer a revitalizing point of view on
linear logic, which remains to be investigated.



Functorial Boxes in String Diagrams 9

2 String Diagrams

In a series of two remarkable papers, André Joyal and Ross Street introduce
the notion of balanced monoidal category [27] and develop a graphical notation,
based on string diagrams, to denote morphisms in these categories [28]. Note that
from a purely topological point of view, these string diagrams are embedded in
the 3-dimensional space. The main task of the second paper [28] is precisely
to justify the notation, by showing that any two string diagrams equal modulo
continuous deformation denote the same morphism in the balanced monoidal
category. The interested reader will find the argument in [28].

Recall that a monoidal category [36] is a category C equipped with a functor

® : CxC — C

called the tensor product, and an object I called the unit object; as well as three
natural isomorphisms

aspc:(A®B)@C — A (B ()
A I®A— A, pa AR — A

called the associativity, the left and the right unit constraints respectively; such
that, for all objects A, B, C and D of the category, the following two diagrams
called MacLane’s associativity pentagon and triangle for unit, commute:

(A®B)® (C® D)

y \a.
(A B)eC)® D A® (B® (C® D))
a®idp AidA®a
\
(A (B C)®D ¢ ~>A® (B C)® D)
(A1) ® >A® (I®B)

A braiding is a natural isomorphism

YaB: A®B— B®A
such that, for all objects A, B and C of the category, the two hexagonal diagrams
below commute:

AR (B®C) ' =(BaC)®A

a/ \a
(A B)@ C B® (C®A)

B —Foy

T BeAeCc “=BeAsg0)
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(AB)®C | =C®(A®B)

ot a~ !

A® (B®C) (C®A)®B

AR~y a~!
A®(C®B) (A C)® B
Finally, a twist is a natural isomorphism
0p: A— A

such that
9[ = id]
and, for all objects A and B of the category, the diagram below commutes:

TA.B

A®B " >B®A
VN3 =S AR

v Y
A®B<mA B® A

Definition 1. A balanced monoidal category is a monoidal category equipped
with a braiding and a twist.

Note that a symmetric monoidal category is a balanced category in which, for
all objects A and B of the category, the morphism

AoB ® =Bwa °" -AwB

is equal to the identity morphism idagp; and the twist morphism 64 coincides
with the identity morphism id4.

From now on, we suppose for legibility that our balanced monoidal category
is strict: this means that, for all objects A, B and C of the category, the com-
ponent a4, B,c, Aa and pa of the the associativity and unit isomorphisms, are
identity morphisms. We follow the conventions used in [28] and thus depict a
morphism f: A® B® C — D ® FE in string diagrams as:

D E

A B C

We depict the composite go f : A — C' of two morphisms f : A — B and
g:B— C as:
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C C

) - »

A A

and the tensor product f®g: A® C — B ® D of two morphisms f: A — B
and g: C — D as:

[ BeD B D

=
| @[
\&/
I

{~]
(=]

A®C A (@)

Then, the braiding v4, g and its inverse 7;137 the twist 64 and its inverse 9;11
are depicted respectively as:

B A B A A A

A B B A JA LA

Note that the third dimension of string diagrams enables to depict the braidings,
and that drawing ribbons (instead of strings) is convenient to depict the twists.

3 Functors in String Diagrams

Here, we recall the graphical notation introduced by Robin Cockett and Robert
Seely [15] in order to depict a usual functor

F.:C—D

between balanced monoidal categories. The functor applied to a morphism f :
A — B of the category C is represented as a box tagged by the label F', and
drawn around the morphism f in the following way:

FB FB

=]
/

@D - C

FA FA
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Like any box, the functorial box F' is designed to separate an inside world from
an outside world: in that case, the inside world is the source category C and the
outside world is the target category . This explains why a string typed F'A
outside the box (thus, in the category D) becomes a string typed A (thus, in the
category C) when it crosses the frontier and enters the box; and that a string
typed B inside the box (in the category C) becomes a string typed F'B (in the
category C) when it crosses the frontier and leaves the box.

Given a pair of morphisms f: A — B and g : B — C, one depicts the two
functorial equalities

F(gof) = FgoFf F(ida) = idpa

in the following way:

M re T FC [ 74 W FA
o ‘e i
@ @
a 2
T| B
B = FB -
| | || B
7 D)
7 A 7] A 7 A
FA I_ FA | Fa | Fa

Note that exactly one string enters and exits each functorial box F'.

4 Monoidal Functors in String Diagrams

In this section, we recall how the graphical notation for functors introduced
in the previous section specializes to monoidal functors, see [15] again. It will
appear that a monoidal functor (in the lax sense) implements a particular kind of
functorial box in which several strings (possibly none) may enter simultaneously,
and from which exactly one string exits. Recall that a lax monoidal functor

(F,m) : C — D
between two monoidal categories is a functor F' equipped with a morphism
mi) : I — FI
and a natural morphism
miap : FA® FB — F(A® B)

such that, for all objects A, B and C, the three “coherence” diagrams below
commute:
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(FA® FB)® FC “ >FA®(FB®FCO)

meFC FA®m

Y \

F(A® B)® FC FA® F(B®C)
Y Fo Y

F((A® B) ® C) ~F(A® (B® C)

FAoI 7 =FA I®FB * =FB
A A
FAQmM Fp mRXFB FX

\i \i
FAFI " >=FA®I) FI®FB " >=F(I®B)

The notion of colax monoidal functor (F,n) is defined in just the same way,
except that the coercion morphisms n go in the other direction:

ne-y FI — 1 n[A,B] : F(A® B) — FA®FB

A strong monoidal functor is a lax monoidal functor (¥, m) in which the coercion
maps m are all isomorphisms; equivalently, it is a colax monoidal functor (F,n)
in which the coercion maps n are all isomorphisms.

Let us explain now how we depict monoidal functors in string diagrams. We
will suppose for legibility that the two monoidal categories C and D are strict.
Given k objects in the category C, there may be several ways to construct a
morphism

MiAy,- A ¢ FAI® - @FA, — FA1®---® Ayg)

by applying a series of structural morphisms m. Then, the definition of a lax mo-
noidal functor, and more specifically the coherence diagrams recalled above, are
designed to ensure that these various ways define the same morphism m4, ... a,]
in the end. This morphism is depicted in string diagrams as a box F' in which k
strings labelled Aj,---, Ay enter simultaneously, join together into a unique
string labelled A; ® --- ® A, which then exits the box. For instance, the two
structural morphisms 74, a, 4, and m_ are depicted as follows:

F(A1 @ A; ® A3) FI

AL ® Ay ® As

(5)
2 (1A

As
|_|FA1 _| FA, |_|FA3
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More generally, given a morphism
ftA® - ®A, — B

in the source category C, one depicts as the functorial box with k£ inputs and
exactly one output:
H FB

B
(6)
-] A Ay

FA, e FA

the morphism
F(f)yomp,,...ag : FA1®---® FA, — FIB

obtained by precomposing the image of f by the functor F' in the target cate-
gory D, with the morphism m4, ... 4,
Remark. The definition of lax monoidal functor would permit a more general and
delayed form of fusion between boxes (think of surface diagrams [48] here). Here,
we limit ourselves to the specific pattern (5) of k boxes F, each one encapsulating
a unique string labelled A4;, for 1 < ¢ < k, and joining together simultaneously
in a box F encapsulating a unique string labelled A; ® --- ® Ag. This specific
pattern generates boxes of the shape (6) which are easy to understand and to
manipulate, and sufficient to the purpose of this tutorial.

The coherence properties required by the definition of a monoidal functor ensure
that we may safely “merge” two monoidal boxes in a string diagram:

<
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Note that a colax monoidal functor may be depicated in a similar fashion, as
a functorial box in which exactly one string enters, and several strings (pos-
sibly none) exit. Now, a strong monoidal functor is at the same time a lax
monoidal functor (F,m) and a colax monoidal functor (F,n). It is thus depicted
as a functorial box in which several strings may enter, and several strings may
exit. Besides, the coercion maps m are inverse to the coercion maps n. Two
diagrammatic equalities follow, which enable to split a “strong monoidal” box
horizontally:

FC, [—I e H FCy. FC, H ve |’| FC,

Cy Ch @h Ce
(9) g
F
B B; FB; vee FB; 8
- (8)
D, f
I Ay A; ) F Ay A;
FA, H vee U FA; FAy J vee L FA;

as well as vertically:

FB, H FB, FD; l_l

These equalities will be illustrated in the series of diagrammatic manipulations
exposed in Sections 6 and 7.

5 Traced Monoidal Categories

In a remarkable article, André Joyal, Ross Street and Dominic Verity [29] define
a trace in a balanced monoidal category C as a natural family of functions

Tth s : C(A®U,BeU) — C(A,B)
satisfying three axioms:
vanishing (monoidality in U)

Trg%v(g) = TTX,B(TTX®U,B®U(Q))7 TrIA,B(f) = f.
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superposing

TTX,B(JC) ®g= Tr%@C,B@D((idB ® 71_),1U) o(f®g)o(ida®vcv))
= Tr%@C,B@D((idB ®yp,u) o (f®g)o(ida® 75,111))

yanking
U -1 . . U —1 .
Tryu(yow o (07 ®idy)) = idv = Trgy(vpy o (0 ®@idy)).

A balanced monoidal category equipped with a trace is then called a traced
monoidal category. String diagrams for balanced monoidal categories extend to
traced monoidal categories by depicting the trace as follows:

B U B

A U A

The small arrow embroidered on the ribbon recalls that this part of the string
diagram depicts a trace, which expresses intuitively a notion of feedback. Thanks
to this ingenious notation for traces, the algebraic axioms of a trace are de-
picted as a series of elementary topological deformations on ribbons, recalled
here from [29]:

sliding (naturality in U)

00

tightening (naturality in A, B)

0 0
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vanishing (monoidality in U)

ol v
N

A B I—

6 Transport of Trace Along a Faithful Functor

Recall [29] that a balanced monoidal functor F' : C — D between balanced
monoidal categories is a strong monoidal functor satisfying that, for all objects A
and B, the diagram below commutes

A

FAFB % ~FB@FA

ma,B mB,A

\4 \
F(AeB) . pBea

and the equality F84 = 6p4 holds. This may be depicted as the two equalities:

FB FA FA

FA FB FA
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When C and D are traced monoidal, one says that F' : C — D is traced monoidal
when F' is balanced monoidal, and preserves traces in the expected sense that,
for all objects A, B and U and for all morphism f: AQ U — B ® U of the
category C, the following equality holds:

F(T'3 5(f) = TFEX,FB(m[:&B] o F'f omya, p).

This equality is depicted as follows:

B 00
i/ FA

F

An elementary exercise in string diagrams with functorial boxes follows. It con-
sists in establishing in a purely diagrammatic fashion a mild but useful general-
ization of a statement (Proposition 2.4) appearing in [29].

Proposition 1 (Characterization of transport along a faithful functor).
Suppose that F : C — D is a faithful, balanced monoidal functor with D traced
monoidal. Then, there exists a trace on C for which F is a traced monoidal
functor iff for all objects A, B,U of the category C, and all morphism

f i AU — B®U
there exists a morphism g : A — B such that

F(g) = TTEX,FB(m[qu,B] o F(f) omya,p)) (10)

where Tr denotes the trace in D. The equality is depicted as follows:

FB
FB []
B |
a = (/)
' /\
Lr
FA || FA

Moreover, if this trace on C exists, it is unique: it is called the trace on the
category C transported from the category D along the functor F'.
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Proof. The direction (=) follows immediately from the very definition of a traced

monoidal functor. Hence, we only establish here the converse direction (<). We

suppose from now on that for every morphism f: AQ U — B ® U there exists

a morphism g : A — B satisfying Equation (10). Note that the morphism g is

unique because the functor F' is faithful. This defines a family of functions noted
ttY s : CLA®U,BoU) — C(A,B).

We establish that tr satisfies the equational axioms of a trace. To that purpose,
we introduce a handy notation for the morphism tr{ 5(f):

B U B

A U A

By definition, trg’ p satisfies the diagrammatic equality:

. \! ru

2/ 2l /A

FA

FB

We establish each of the equations by a series of elementary manipulations on
string diagrams. Although the proof is diagrammatic, it is absolutely rigorous,
and works for weak monoidal categories C and D as well as strict ones.

Sliding (naturality in U). We want to show the equality

B B
()
L)
)
A A

Because the functor F' is faithful, it is sufficient to establish that the two mor-
phisms A — B have the same image FFA — F'B in the target category D:
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Once the definition of tr applied, we separate the box in two parts, using Equa-
tion (7) for the lax monoidal functor F:

Then, after applying the sliding axiom of the trace Tr in the target category D,
we reunify the two separate boxes, using the variant of Equation (7) satisfied by
colax monoidal functors. The definition of tr concludes the proof.

Tightening (Naturality in A and B). The proof is very similar to the proof of the
sliding equality. Because the functor F' is faithful, we will deduce the equality

from the equality by F' of the image of the two morphisms in the target category:
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=\ N
X N

FA

This is established as follows. Once the definition of tr applied, we separate the
box in three parts, using Equation (7) for lax monoidal functors, and its colax
variant:

Then, we apply the tightening axiom of the trace Tr in the category D, fol-
lowed by the definition of tr, and finally reunify the three boxes together, using
Equation (7) for lax monoidal functors, and its colax variant.

Vanishing (monoidality in U). We will proceed here as in the previous proofs,
and deduce the two equalities formulated in the source category C,

000

1~
N4
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from the two equalities below, formulated in the target category D,

I
C

The first equation is established as follows. After applying the definition of tr,
we split the string U ® V' in two strings U and V, then separate the box in two
parts, using Equation (8) for the strong monoidal functor F:

FU®V)

Then, we apply the sliding and vanishing axioms of the trace Tr in the cat-
egory D, and reunify the two boxes using Equation (8), before concluding by
applying the definition of tr twice.

The second equation is established exactly as the previous one, except that we
are dealing now with the nullary case instead of the binary one. After applying
the definition of tr, we split the string I, and separate the box in two parts,
using Equation (8) for the strong monoidal functor F:
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Then, just as for the binary case, we apply the sliding and vanishing axioms of
the trace Tr and reunify the two boxes, before concluding.

Note that we need the hypothesis that the functor F' is strong monoidal in order
to perform the manipulations for vanishing — while we needed only that it is
lax and colax monoidal in the arguments devoted to sliding and tightening.

Superposing. We will establish only the first of the two equalities below — since
the second one is proved in exactly the same way.

Because the functor F' is faithful, this reduces to showing that the two morphisms

have the same image in the category D — which we establish by the series of
the strong monoidal functor F'; and apply the definition of tr in one of the two
boxes.

gory D, we merge the two boxes, using again Equation (9) for the strong monoidal
functor F'; we insert the two braidings inside the box, using the hypothesis that

equalities below. First, we separate the box in two parts, using Equation (9) for
Then, after applying the superposing axiom of the trace Tr in the target cate-
the functor F' is balanced; and finally conclude using the definition of tr.
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Yanking. The diagrammatic proof follows easily from the hypothesis that the
functor F' is faithful, and balanced monoidal. The proof is left to the reader as
exercise.

From this, we conclude that tr defines a trace in the source category C. The fact
that the functor F' is traced monoidal follows then immediately from the very
definition of tr. This concludes the proof of Proposition 1.

Application to models of linear logic. In a typical model of linear logic based
on a linear adjunction (1) the category M is a full subcategory of the category
of Eilenberg-Moore coalgebras of the comonad ! = L o M in the category L. —
and the functor L is the associated forgetful functor. In that case, Proposition 1
ensures that the category M is traced when the category L is traced, and when,
moreover, the trace

T4 .5(f) : LA—LB (11)
of every coalgebraic morphism
f + LA®LU — LB®LU (12)

is coalgebraic. This is precisely what happens in the relational model of linear
logic, where:

— L is the category Rel of sets and relations, with tensor product defined as
usual set-theoretic product,

— M is the co-kleisli category of the comonad ! which transports every set A
to the free commutative comonoid !A with finite multisets of elements of A
as elements, and multiset union as coproduct. Note that the co-kleisli cate-
gory M is understood here as the full subcategory of free coalgebras of the
exponential comonad.

This establishes that the category M has a well-behaved fixpoint operator. A
similar method applies to construct well-behaved fixpoint operators in categories
of games and strategies [49].

Another application: Masahito Hasegawa observed (private communication)
that the category M is traced whenever it is the co-kleisli category of an idem-
potent comonad ! = L o M. This interesting fact may be explained (and mildly
generalized) by applying Proposition 1 in the following way. Let 7 and € denote
the unit of the monad M o L and the counit of the comonad L o M respectively.
For general reasons related to adjunctions, it appears that for every morphism

f:AxU — BxU (13)
in the category M, the morphism
h = Triare(my goLlfomuap) : LA > LB
is equal in the category IL to the morphism
L €
LA " =romra "M -pmiB " -LB (14)

The equality is nicely depicted in string diagrams:



Functorial Boxes in String Diagrams 25

LB
LMLB

\\ )
e N
LB
LB
LU
LU v
o
@ = \
A T‘ LA )
LA MLA
A
2] y

oyl

Here, Proposition 1 applies, and the category M is thus traced, whenever the
functor L is faithful, and for every morphism f in (13), the morphism (14) is
the image L(g) in the category L of a morphism ¢g : A — B in the category M.

This is precisely what happens when the category M is defined as the co-
kleisli category associated to an idempotent comonad ! = L o M. In that case,
indeed, the morphism ey, : LM LB — LB is the identity, and the morphism g
is defined as:

g = A " s=ymra M -mLB

A nice problem remains open. A few years ago, Ryu Hasegawa [21] constructed
a trace related to the Lagrange-Good inversion formula, in a category of analytic
functors. This category, which is cartesian, is the co-kleisli category associated to
a specific model of linear logic. Interestingly, the diagrammatic account exposed
in this tutorial does not seem to apply (at least directly) to Ryu Hasegawa’s
construction. It would be extremely satisfactory to devise alternative algebraic
conditions to cover this important example. We leave this open here.

7 Decomposing the Exponential Box of Linear Logic

The decomposition ! = LoM of the exponential modality of linear logic illustrates
the general diagrammatic principle that every functorial box separates an inside
world from an outside world, each world implementing his own (eg. cartesian,
monoidal closed) policy. We take the freedom of considering here a “balanced”
version of linear logic, whose categorical model is defined as a balanced monoidal
adjunction

M 1 L (15)
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between a balanced monoidal category L and a cartesian category M. Note that
in such an adjunction, the functor L is balanced monoidal.

In that setting, the exponential box ! with its auxiliary doors labelled by the
formulas !A4,...,!A; and with its principal door labelled by the formula !B is
translated as a lax monoidal box M enshrined inside a strong monoidal box L,
in the following way:

'B |_| LMB
4 B N ( MB N\
B
i
M| A Ap
] A A L] M4 MA; )
14, l_l I_I 1A LMA; [ | JLMAk

Now, the category M enshrined “inside” the functorial box L is cartesian, with
binary product noted x here. Hence, every object X of the category M induces
a diagonal morphism

Ax : X — X x X.
In particular, every object A of the category L induces a diagonal morphism
AMA tMA — MAX MA.

The contraction of linear logic is defined as the morphism L(Aps4) depicted as
the diagonal string Ajs4 inside the strong monoidal box L:

14 LMA |_|

If one translates in string diagrams the usual cut-elimination step of linear logic
between a contraction rule and an introduction rule of the exponential box, this
decomposes the step in a series of more atomic steps. First, the box L which
encapsulates the diagonal A4 merges with the box L which encapsulates the
content f of the exponential box. This releases the diagonal Ap;4 inside the
cartesian category M enshrined in the exponential box.



LMB LMB
MB MB
A
L MB T
LMB
MB
B
f
M| Ar Ay
L MA, MAy
LMA; | | _J LM A,
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ﬂ LMB

L

MB

MB

MB

A

MA,, )

i

JL]\JA;C

Then, the diagonal Ap;a replicates the content f of the exponential box — or
more precisely the morphism f encapsulated by the lax monoidal box M. Note
that the duplication step is performed in the cartesian category M enshrined by

the functorial box L.

LMB ] s ||
/7 MB MB N\
B B
| |
! !
M| A Ay M | A Ay
MA, MA, MA MA
A A
TI MA, MAy, /
LMA, U L[ za1a,

Once the duplication finished, the strong monoidal box is split in three horizontal

parts using Equation (8).

LMB

7]

MB

‘V\Al

B

MA,

MA

]

MA,

M Ay

%k

LMA, |_|

I_I LM Ay

The intermediate box may be removed, because the functor L is balanced.
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M M
LMB LMB
MB MB
B B
S /
M| A Ay M| Ar Ay,
7] M voe \ MA, MA on MA,
LMA, e e LM Ay

MA;

LMA; LI »

Finally, the remaining monoidal boxes L are split vertically, using Equation (9).

.o %k ]
.o

LMA

s [] LMB

MB MB

( B B

f A Ay f
M [ Ay M A
’ oo MAy
I3 MA; vee \ 7
LMA; e vee LMA,
A A
7] MA ) Tl MA,
LMA, Ll “ee ]_l LMA

This completes the categorical and diagrammatical transcription of this particu-
lar cut-elimination step. The other cut-elimination steps of linear logic involving
the exponential box ! are decomposed in a similar fashion.
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Some Results on a Game-Semantic Approach to
Verifying Finitely-Presentable Infinite
Structures (Extended Abstract)

C.-H.L. Ong

Oxford University Computing Laboratory
http://users.comlab.ox.ac.uk/luke.ong/

Abstract. We present some results on a game-semantic approach to
verifying infinite structures that are generated by higher-order recursion
schemes. The key idea is a certain Transference Principle from the struc-
ture generated by a given recursion scheme to an auxiliary computation
tree, which is itself generated by a related order-0 recursion scheme. By a
structural analysis of the computation tree based on the innocent game
semantics of the recursion scheme, we can infer certain properties of the
generated structure by appropriate algorithmic analysis of the computa-
tion tree.

1 Introduction

A basic problem in Verification is to identify classes of finitely-presentable infinite-
state systems that have decidable monadic second-order (MSO) theories. This is
a question of practical importance because MSO logic is highly expressive: tem-
poral logics that are widely used in computer-aided verification such as LTL,
CTL and CTL* are embeddable in the modal mu-calculus, and hence, embed-
dable in MSO logic. Indeed MSO logic is a kind of gold standard in Verification
because it is virtually as strong (a specification language) as can be, in the sense
that any obvious extension of the logic would render it undecidable.

Perhaps one of the best known examples of such MSO-decidable structures
is the class of regular trees, as studied by Rabin [1] in 1969. A notable ad-
vance occurred some fifteen years later, when Muller and Shupp [2] proved that
the configuration graphs of pushdown systems have decidable MSO theories. In
the 1990s, as finite-state technologies matured, researchers embraced the chal-
lenges of software verification. A highlight in this period was Caucal’s result [3]
that prefiz-recognisable graphs have decidable MSO theories. Prefix-recognisable
graphs may have unbounded out-degrees; they can be characterized [4] as graphs
that are obtained from the configuration graphs of pushdown systems by factor-
ing out the e-transitions.

In 2002 a flurry of discoveries significantly extended and unified earlier de-
velopments. In a FOSSACS 2002 paper [5], Knapik, Niwiriski and Urzyczyn in-
troduced an infinite hierarchy of (possibly infinite) X-labelled trees (i.e. ranked
and ordered trees whose nodes are labelled by symbols of a ranked alphabet X):

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 31-40, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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the nth level of the hierarchy, SafeRecTree, Y, consists of X-labelled trees gen-
erated by order-n recursion schemes that are homogeneously typed' and satisfy
a syntactic constraint called safety?. They showed that for every n > 0, trees
in SafeRecTree, > have decidable MSO theories; further SafeRecTree,> =
PushdownTree, Y i.e. Y-labelled trees generated by order-n safe recursion
schemes are exactly those that are generated by order-n (deterministic) push-
down automata. Thus SafeRecTreey, the order-0 trees, are the regular trees
(i.e. trees generated by finite-state transducers); and SafeRecTree, X, the order-
1 trees, are those generated by deterministic pushdown automata. Later in the
year, Caucal [6] introduced an infinite hierarchy of X-labelled trees, the nth level
of which, CaucalTree, X, consists of Y-labelled trees that are obtained from
regular Y-labelled trees by iterating n-times the operation of inverse determin-
istic rational mapping followed by unravelling. A major result in Caucal’s work
[6, Theorem 3.5] is that SafeRecTree, Y = CaucalTree,X. To summarize:

Theorem 1 (Knapik, Niwinski, Urzyczyn and Caucal 2002). For any
ranked alphabet X, and for every n > 0, we have

SafeRecTree, > = PushdownTree, = CaucalTree,’’;

further, trees from the class have decidable MSO theories.

Though a rather awkward syntactic constraint, safety plays an important al-
gorithmic role. Knapik et al. have asked [5] if the safety assumption is really
necessary for their decidability result. In other words, let RecTree,X be the
class of X-labelled trees generated by order-n recursion schemes (whether safe
or not, and whether homogeneously typed or not), the question is:

For which n > 2 do trees in RecTree, > have decidable MSO theories?

A partial answer to the question has recently been obtained by Aehlig, de
Miranda and Ong at TLCA 2005 [7]; they showed that all trees in RecTrees X
have decidable MSO theories. Independently, Knapik, Niwinski, Urzyczyn and
Walukiewicz obtained a somewhat sharper result (see their ICALP 2005 paper
[8]); they proved that the modal mu-calculus model checking problem for trees
generated by order-2 homogeneously-typed recursion schemes (whether safe or
not) is 2-EXPTIME complete.

! The base type o is homogeneous; a function type A; — (A2 — --- — (A, — 0)---)
is homogeneous just if each A; is homogeneous, and ord(Ai) > ord(Az) > --- >
ord(Ay). A term (or a rewrite rule or a recursion scheme) is homogeneously typed
just if all types that occur in it are homogeneous.

2 A homogeneously-typed term of order k& > 0 is said to be unsafe if it contains an
occurrence of a parameter of order strictly less than k, otherwise the term is safe.
An occurrence of an unsafe term ¢, as a subexpression of a term t', is safe if it occurs
in an operator position (i.e. it is in the context - - - (¢s) - - -), otherwise the occurrence
is unsafe. A recursion scheme is safe if no unsafe term has an unsafe occurrence in
the righthand side of any rewrite rule.



Some Results on a Game-Semantic Approach 33

In this extended abstract, we explain a game-semantic approach to verifying
infinite structures that are generated by higher-order recursion schemes. As a
major case study, we extend the result of Knapik et al. [8] by proving that for
all n > 0, trees in RecTree, Y have decidable MSO theories; we give an outline
of the proof in Section 2. In Section 3 we give an automata-theoretic character-
ization of trees in RecTree, Y where n > 0. We show that for the purpose of
generating Y-labelled tree, recursion schemes are equi-expressive with a new kind
of automata called collapsible pushdown automata. The same game-semantic ap-
proach can be extended to verify certain classes of finitely-presentable infinite
graphs. In Section 4, we briefly consider the solution of parity games on config-
uration graphs of collapsible pushdown automata. Finally we mention a couple
of further directions in Section 5.

Technical Preliminaries

Types are generated from the base type o using the arrow constructor —. Every
type A can be written uniquely as A; — -+ — A,, — o (by convention arrows
associate to the right), for some n > 0 which is called its arity. We define the
order of a type by: ord(o) = o and ord(A — B) = max(ord(A) + 1, ord(B)).
Let X be a ranked alphabet i.e. each Y-symbol f has an arity ar(f) > 0 which
determines its type o — e Further we shall assume that each symbol
ar(f)
f € X is assigned a finite set Dir(f) = {1,---,ar(f)} of directions, and we
define Dir(X) = U;cx Dir(f). Let D be a set of directions; a D-tree is just
a prefix-closed subset of D* the free monoid of D. A Y-labelled tree is a
function ¢ : Dom(t) — X such that Dom(¢) is a Dir(X')-tree, and for every node
a € Dom(t), the X-symbol ¢(«) has arity k if and only if o has exactly & children
and the set of its children is { @ 1,---,ak } i.e. t is a ranked (and ordered) tree.
For each type A, we assume an infinite collection Var® of variables of type
A. A (deterministic) recursion scheme is a tuple G = (X, N, R,S) where X
is a ranked alphabet of terminals; N is a set of non-terminals, each of a fixed
type; S € N is a distinguished start symbol of type o; R is a finite set of rewrite
rules — one for each non-terminal F' : (Ay,---, A, 0) — of the form

F& - &n — e

where each &; is in Var®i, and e is an applicative term® of type o constructed
from elements of X UN U {&,---,&, }. The order of a recursion scheme is the
highest order of its non-terminals.

We use recursion schemes as generators of X-labelled trees. The value tree of
(or the tree generated by) a recursion scheme G is a possibly infinite applicative
term, but viewed as a Y-labelled tree, constructed from the terminals in X', that

3 Applicative terms are terms constructed from the generators using the application
rule: if d: A — B and e : A then (de) : B. Standardly we identify finite X-labelled
trees with applicative terms of type o generated from X-symbols endowed with 1st-
order types as given by their arities.
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is obtained by unfolding the rewrite rules of G ad infinitum, replacing formal
by actual parameters each time, starting from the start symbol S. For n > 0
we define RecTree,X to be the class of X-labelled value trees of (arbitrary)
order-n recursion schemes. Plainly we have SafeRecTree,> C RecTree, X for
every n > 0. It follows from the definition of safety that SafeRecTree,> =
RecTree, X for n =0 and 1, but it is not known whether the inclusion is strict
for n > 2 (see Conjecture 1).

Ezample 1. Let G be the order-2 (unsafe) recursion scheme with rewrite rules:

S—Ha
Hz°— F(gz)
F o0 — ¢ (o (F h))

where the arities of the terminals g, h,a are 2,1,0 respectively. The value tree
[G] is the X-labelled tree defined by the infinite term ga (ga (h (h(h --+)))):

a/g\g
w \h
h

The only infinite path in the tree is the node-sequence € - 2 - 22 - 221 - 2211 - - -
(with the corresponding trace gghhh --- € X¢).

2 Trees Generated by Recursion Schemes Have Decidable
MSO Theories

We state our first main result as follows:

Theorem 2. For every n > 0 the modal mu-calculus model-checking problem
for trees in RecTree, X is n-EXPTIME complete.

Since MSO logic and the modal mu-calculus are equi-expressive over trees (see
e.g. [9]), it follows that these trees have decidable MSO theories. Our proof
of Theorem 2 relies on a certain Transference Principle from the value tree of
a recursion scheme G to an auxiliary computation tree, which is itself a tree
generated by a related order-0 recursion scheme G, called the long transform of
G. By exploiting a structural analysis of the computation tree made possible by
the innocent game semantics (in the sense of Hyland and Ong [12]) of the scheme
G, we can infer certain properties of the value tree [G] (e.g. acceptance by a
given tree automaton) by appropriate algorithmic analysis of the computation
tree. A full account of the result can be found in the preprint [10]; see also the
summary at LICS 2006 [11].
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Removing the safety assumption: a game-semantic approach

Here we briefly explain our approach. First we note that it would be futile
to analyse directly the value tree [ G] since it has no useful structure for our
purpose: by definition [G] is the extensional outcome of a potentially infinite
process of rewriting. Rather it is the algorithmics of this computational process
that one should seek to understand. Given an order-(n+ 1) safe recursion scheme
G, the approach taken in [5] was to consider an associated tree that is obtained
by contracting only (and all) the order-1 (i.e. lowest ordered) (-redexes in the
rewrite rules of G. The tree thus generated, written Jg, coincides with the value
tree of a related order-n recursion scheme G* (i.e. 3g = [ G*]); further the MSO
theory of the order-(n+1) tree [ G] is reducible to that of the order-n tree [ G ]
in the sense that there is a recursive mapping of MSO sentences ¢ +— ¢’ such that
[GlE ¢t [G*] E ¢ [5, Theorem 3.3]. The safety assumption is crucial to the
reduction argument. Roughly speaking, the point is that S-redexes in a safe term
can be contracted using capture-permitting substitution (i.e. without renaming
bound variables). It follows that one can construct the tree Jg using only the
original variables of the recursion schemes G. Without the safety assumption,
the same construction would require an unbounded supply of names!

Our approach to removing the safety assumption stems from an observation
due to Klaus Aehlig [7]: by considering the long transform of a recursion scheme
(which is obtained by expanding the RHS of each rewrite rule to its n-long form,
inserting explicit application operators, and then currying the rule), the two
constituent actions of the rewriting process, namely, unfolding and (-reduction,
can be teased out and hence analysed separately. Given an order-n recursion
scheme G:

— We first construct the long transform G, which is an order-0 recursion
scheme.

— We then build an auxiliary computation tree \(G) which is the outcome of
performing all of the unfolding*, but none of the 3-reduction, in the G-rules.
As no substitution is performed, no variable-renaming is needed.

— We can now analyse the S-reductions locally (i.e. without the global operation
of substitution) by considering traversals over the computation tree, based
on innocent game semantics [12].

Note that we do not (need to) assume that the recursion scheme G is safe or type-
homogeneous. Formally the computation tree A(G) is defined to be the value tree
of the long transform G; the tree A(G) is regular, since G is an order-0 recursion
scheme.

Correspondence between paths in [ G| and traversals over A(G)

We sketch an outline of the proof of Theorem 2. We are concerned with the
decision problem: Given a modal mu-calculus formula ¢ and an order-n recursion
scheme G, does [ G] satisfy ¢ (at the root €)? The problem is equivalent [14]

4 T.e. rewriting the LHS of a rule to the RHS with no parameter passing - since the G
rules, being order-0, have no formal parameters.
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to deciding whether a given alternating parity tree automaton (APT) B has an
accepting run-tree over the Y-labelled tree [G]. Recall that an accepting run-
tree of B over [ G] is a certain set of state-annotated paths in [ G| that respect
the transition relation of B, such that every infinite path in the set satisfies
the parity condition. Instead of analysing paths in [G] directly, we use game
semantics to establish a strong correspondence between paths in the value tree
and traversals over the computation tree.

Theorem 3 (Correspondence). Let G be a recursion scheme. There is a one-
one correspondence, p +— t,, between mazimal paths p in the value tree [G]
and mazimal traversals t, over the computation tree \(G). Further for every
mazimal path p in [G], we have t, | ¥~ = p | X, where s | X~ denotes the
subsequence of s consisting of only X~ -symbols with X~ = X\ { L }.

The proof of the Theorem is an application of the innocent game semantics of
the recursion scheme G (see [13] for a proof of the statement in a more general
setting). In the language of game semantics, paths in the value tree correspond
exactly to plays in the strategy-denotation of the recursion scheme; a traversal is
then (a representation of) the uncovering [12] of such a play. The path-traversal
correspondence (Theorem 3) allows us to prove the following useful transference
result:

Corollary 1. A given property® APT has an accepting run-tree over the value
tree if and only if it has an accepting traversal-tree over the computation tree.

Relative to a property APT B over X-labelled trees, an (accepting) traversal-tree
of B over A(G) plays the same role as an (accepting) run-tree of B over [G]. A
path in a traversal-tree is a traversal in which each node is annotated by a state
of B.

Simulating traversals over A(G) by paths in A\(G)

Our problem is thus reduced to finding an effective method of recognising certain
sets of infinite traversals (over a given computation tree) that satisfy the parity
condition. This requires a new idea as a traversal is a sequence of nodes that
is most unlike a path; it can jump all over the tree and may even visit certain
nodes infinitely often. Our solution again exploits the game-semantic connexion.
It is a property of traversals that their P-views (in the sense of [12]) are paths (in
the computation tree). This allows us to simulate a traversal over a computation
tree by (the P-views of its prefixes, which are) annotated paths of a certain
kind in the same tree. The simulation is made precise in the notion of traversal-
simulating APT (associated with a given property APT and a recursion scheme
G). We establish the correctness of the simulation by the following result:

Theorem 4 (Simulation). A given property APT has an accepting traversal-
tree over the computation tree \(G) if and only if the associated traversal-
simulating APT has an accepting run-tree over the computation tree.

5 Property APT because the APT corresponds to the property described by a given
modal mu-calculus formula.
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Note that decidability of the modal mu-calculus model-checking problem for
trees in RecTree, X follows at once since computation trees are regular, and the
APT acceptance problem for regular trees is decidable [1,14].

To prove n-EXPTIME decidability of the model-checking problem, we first
establish a certain succinctness property for traversal-simulating APT C: If C
has an accepting run-tree, then it has one with a reduced branching factor. The
desired time bound is then obtained by analysing the complexity of solving an
associated (finite) acceptance parity game, which is an appropriate product of
the traversal-simulating APT and a finite deterministic graph that unravels to
the computation tree in question. n-EXPTIME hardness of the model-checking
problem follows from a result of Engelfriet [15] (see also [16]).

3 Collapsible Pushdown Automata and Recursion
Schemes

In their ICALP 2005 paper [8], Knapik et al. showed that order-2 homogeneously-
typed recursion schemes are equi-expressive with a variant class of order-2 push-
down automata called panic automata. In view of their result, it is natural to
ask if there is a corresponding automata-theoretic characterization of arbitrary
recursion schemes for all finite orders. In recent joint work with A. S. Murawski
[17], we have shown that for the purpose of generating X-labelled trees, recursion
schemes are equi-expressive with collapsible pushdown automata. Precisely:

Theorem 5 (Equi-expressivity). For each n > 0, a X-labelled tree is gen-
erated by an order-n (deterministic) recursion scheme iff it is generated by an
order-n (deterministic) collapsible pushdown automaton.

An order-n collapsible pushdown automaton (CPDA) is just an order-n push-
down automaton in which every symbol a in the n-stack S may have a link to a
necessarily lower-ordered stack situated below a in S| if there is such a stack at
that point; if the stack pointed to is of order j, the link is called a (j+1)-link. For
2 < j < n, j-links are introduced by the order-1 push operation pushij where a
is a stack symbol: when push‘f) ; is applied to an n-stack S, a link is first attached
from a copy of a to the (j — 1)-stack that lies just below the top (5 — 1)-stack
of S; the symbol a, together with its link, is then pushed onto the top of the
top l-stack of S. Whenever the top (j — 1)-stack is duplicated by the order-j
operation push;, the link-structure of the top (j — 1)-stack is preserved. There
is a new stack operation called collapse, whose effect is to cause the stack S to
collapse up to the point indicated by the link emanating from the top,-element
of S i.e. the top (j — 1)-stack of collapse(S) is the (j — 1)-stack pointed to by
the link emanating from the top;-element of S.

An outline proof of Theorem 5

Given an order-n recursion scheme G, we construct an order-n collapsible push-
down automaton CPDA(G) whose stack symbols are given by the (ranked) sym-
bols that label the nodes of the computation tree A(G). We then show that
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CPDA(G) can compute any given traversal over the computation tree A(G), and
hence, by the path-traversal correspondence (Theorem 3), it can compute any
path in the value tree [ G] as required.

In the other direction, given an order-n CPDA A with state-set {1,---,m },
we construct an order-n recursion scheme GG 4 whose non-terminals are

Fptin—e)" = mn-1)"—.—=0"—=0

where a ranges over the stack alphabet, 1 < p < m, 2 < e < n, 0 is the base
type (of order 0), and the types (n + 1) = n™ — n (of order n + 1) are defined
by recursion. We use ground-type terms

Fg’eLMn_l'-'Mo : 0

to represent (reachable) configurations (p, S) of A, where S is the n-stack. The
idea is that the top,-element of S — a with an e-link (say) — (more precisely the
pair (p, top; 5)) is coded as Fp¢ L : n; further for each 1 < j <nand 1 <p <m,
we have

— (p, top; S) is coded as FpeLMp 1--My_ji1:n—j+1
— (p, pop; S) is coded as My,—j p My—j—1--- Mo : 0
— (p, collapse S) is coded as L, My,_e—1 --- My : 0.

Restricted to order-2, CPDA coincide with second-order pushdown automata
with links (in the sense of Aehlig et al. [18]), which are essentially the same as
panic automata (in the sense of Knapik et al. [8]). Our CPDA-to-scheme trans-
formation specialises to exactly the same transformation in [8], when restricted
to order-2 CPDA. Our result in this section will be presented elsewhere; a full
account can be found in the preprint [17].

4 Parity Games over Configuration Graphs of CPDA

The same game-semantic approach can be carried over to certain classes of
finitely-presented graphs such as those given by (non-deterministic) collapsi-
ble pushdown automata. Fix an order-n CPDA A and a parity game over its
configuration graph CG 4, and let G4 be the recursion scheme determined by A
(as given by the CPDA-to-scheme transformation in Theorem 5). Paths in the
configuration graph correspond exactly to traversals over the computation tree
MG 4) (or equivalently, traversals over the finite directed graph Gr(G4) that
unravels to A(G4)). For any parity game over CG 4, accepting traversal-trees
over Gr(G 4) can be recognised by a traversal-simulating APT C (i.e. a version
of Theorem 4); it follows that there is an equivalent finite acceptance parity
game, which is an appropriate product of Gr(G 4) and C. Hence parity games
over the configuration graphs of order-n CPDA are solvable. We intend to extend
the approach to the solution of games with w-regular and non-regular winning
conditions. Another interesting problem is the computation of winning regions
of these games.
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5 Further Directions

Does safety constrain expressiveness?

This is the most pressing open problem. In a FOSSACS 2005 paper [18], we have
shown that there is no inherently unsafe word language at order 2. More precisely,
for every word language that is generated by an order-2 unsafe recursion scheme,
there is a safe (but in general non-deterministic) recursion scheme that generates
the same language. However it is conjectured that the result does not hold at
order 3. Further, for trees, we conjecture that there are already inherently unsafe
trees at order 2 i.e.

Congecture 1. SafeRecTree,’ C RecTreezX i.e. there is an unsafe order-2
deterministic recursion scheme whose value tree is not the value tree of any safe
deterministic recursion scheme.

The Conjecture is closely related to a word language, which we call Urzyczyn’s
language [18]. The language can be generated by a deterministic, unsafe order-
2 recursion scheme (and hence, by a non-deterministic, safe order-2 recursion
scheme). The Conjecture is equivalent to the statement: Urzyczyn’s language
cannot be generated by any deterministic, safe order-2 recursion scheme (or
equivalently any order-2 deterministic pushdown automaton).

Semantic vs verification games

We would like to develop further the pleasing mix of Semantics (games) and
Verification (games) in the work. A specific project, pace [19], is to give a deno-
tational semantics of the lambda calculus “relative to an APT”. More generally,
construct a cartesian closed category, parameterized by APTs, whose maps are
witnessed by the variable profiles (see [10]).
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Abstract. In a data word or a data tree each position carries a label
from a finite alphabet and a data value from some infinite domain. These
models have been considered in the realm of semistructured data, timed
automata and extended temporal logics.

This paper survey several know results on automata and logics ma-
nipulating data words and data trees, the focus being on their relative
expressive power and decidability.

1 Introduction

In many areas there is a need for good abstract models manipulating explicitly
data values. We mention two of them here.

In program verification one has to decide statically whether a program satisfies
some given specification. Programs may contain several procedures calling each
other recursively. Procedures may have parameters and data could be exchanged
via the parameters. In program verification, variables over unbounded domains
such as integers, arrays, parameters etc. are usually abstracted to finite range
domains and configuration graphs of pushdown automata have been used quite
successfully in order to model recursive dependencies between procedures. It is
then possible to check properties expressed by temporal logics such as LTL or
CTL. The modelization using a finite domain has some obvious limitations but
it is hard to avoid while remaining decidable. One notable exception is [8] where
procedures can have one parameter whose value can range over the integers and
the procedures can perform limited arithmetic on that parameter.

In the database context also, most theoretical work on XML and its query
languages models XML documents by labeled ordered unranked trees, where
the labels are from a finite set. Attribute values are usually ignored. This has
basically two reasons, which are not independent. First, the modeling allows to
apply automata based techniques, as automata operate on trees of this kind.
Second, extending the model by attribute values (data values) quickly leads to
languages with undecidable static analysis (see, for instance [1,4,18,27]). Never-
theless, there are examples of decidable static reasoning tasks involving attribute
values.

One of them is validation of schema design. A schema contains a struc-
tural part and integrity constraints such as keys and inclusion constraints. In

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 41-57, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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a semistructured model such as XML the structural part is mainly a mecha-
nism for assigning types to nodes of the document tree. It is then natural to ask
whether a specification is consistent and whether a set of integrity constraints is
minimal or not (¢mplication problem). Decidable cases were proposed for XML
schemas in [2].

Another one is query optimization and checking whether one query is in-
cluded into or equivalent to another one. Each of these inclusion tests could
be relativized by the presence of a schema. In the context of XML and one
of its most popular language XPath several decidable fragments were proposed
in [27,4,18,6].

Each of the papers cited above propose a decidable framework where data
values are explicitly manipulated. In each of them the decidability was obtained
using a non-trivial ad-hoc argument. It is natural to wonder whether there exists
a general decidable suitable theoretical framework which could be used to infer
all this kind of results. This framework is yet to be discovered and this paper is
a modest attempt to gather known results in this direction. We tried to group
here interesting models of automata and logical frameworks which could be used
in order to code some of the problems mentioned above.

To make this survey finite size we have restricted our attention to an approach
that, in our opinion, deserves more attention from the theoretical community. All
over this survey we model data values using an infinite domain (like the integers).
Moreover our structures have a very simple shape as they are either finite strings
or finite trees. More precisely we are given two alphabets over strings and trees,
one which is finite and can be used to code names and constants appearing in
the programs, in the schemas, or in the queries, and another one which is infinite
and which can be used to code data values. We call such structures data words
or data trees.

We present several models of automata and several logics which are evaluated
on data words and data trees. We focus on their relative expressive power and
on decidability.

When dealing with an infinite domain, like the integers for instance, the al-
lowed arithmetic is a central issue in order to obtain decidability. We avoid
this problem here by allowing only the simplest arithmetical operation which is
equality test: The only operation that can be performed in our infinite domain
is checking whether to values are equal. We will see that this is already enough
to make the story interesting.

We have modified slightly several known concepts so that we could present
each of them within a uniform framework in order to compare them. We hope
that the reader familiar with one of them will not be too much disturbed by
this.

This survey contains no proof at all. Those can be found in the references
provided all over the paper. We wish we had time to include more references,
especially in the verification context.
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2 Some Notations

In this paper we consider two kinds of model: data words and data trees. Let X
be a finite alphabet of labels and D an infinite set of data values.

A data word w = wy -+ - w, is a finite sequence over X x D, i.e., each w; is of
the form (a;,d;) with a; € ¥ and d; € D. A data word language is a set of data
words.

A data tree t is a finite unranked, ordered tree where each node is of the form
(a;,d;) with a; € X and d; € D. As above a data tree language is a set of data
trees.

Given a node x of a data tree or a position z of a data word, we denote
respectively by x.d and z.l the data value of D and the label of X associated
to z. The idea is that the alphabet Y is accessed directly, while data values can
only be tested for equality. This amounts to considering words and trees over the
finite alphabet Y endowed with an equivalence relation on the set of positions.
With this in mind, given a data word or a data tree w, we will call class of
w a set of positions/nodes of w having the same data value. Finally, given a
data word w (or a data tree t), the string projection of w (the tree projection of
t), denoted by STR(w) (TREE(t)), is the word (tree) constructed from w (t) by
keeping only the label in X' and projecting out all the data values.

For each integer n € N we note [n] the set of all integers from 1 to n. Given
a data word w we denote its length by |w|.

3 Automata

In this section we present several models of automata over data words and data
trees. We present them in details in the word case and only briefly discuss the
extension to trees.

3.1 Register Automata

Register automata are finite state machines equiped with a finite number of
registers. These registers can be used to store temporarily values from D. When
processing a string, an automaton compares the data value of the current position
with values in the registers; based on this comparison, the current state and the
label of the position it can decide on its action. We stress that the only allowed
operation on registers (apart from assignment) is a comparison with the symbol
currently being processed. The possible actions are storing the current data value
in some register and specifying the new state. This model has been introduced
in [20] and was later studied more extensively in [28]. We give here an equivalent
formalism that fits with data words.

Definition 3.1. A k-register automaton A is a tuple (Q, qo, F, 10, T) where

— Q is a finite set of states; qo € Q is the initial state; F C Q is the set of
final states;
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— 70 :{1,...,k} — D is the initial register assignment; and,
— T is a finite set of transitions of the forms (q,a, E) — ¢’ or (q,a, E) — (¢, 1).
Here, i€ {1,...,k}, ¢, €Q,ae€ X and E C{1,...,k}.

Given a data word w, a configuration of A on w is a tuple [4,q, 7] where 0 <
Jj < |w| is the current position in the word, ¢ € @ is the current state, and
7:4{1,...,k} — D is the current register assignment. The initial configuration
is v0 := [1,q0,70]- A configuration [j,q, 7] with ¢ € F is accepting. Given v =
[4,q, 7], the transition (p,a,E) — (3 applies to v iff p = ¢, wj.l = a and E =
{l | wj.d =7(1)} is the set of registers having the same data value as the current
position.

A configuration ' = [j', ¢/, 7'] is a successor of a configuration v = [j, ¢, 7] iff
there is a transition (¢,a, F) — ¢’ that applies to v, 7/ =7, and j' = j + 1; or
there is a transition (¢,a, E) — (¢’,) that applies to v, 7/ = j+ 1, and 7’ is
obtained from 7 by setting 7/(i) to w;.d. Based on this, reachable configuration
and acceptance of a data word is defined in the standard way. We denote by
L(A) the language of data words accepted by the register automata A.

Ezxample 3.2. There exists a 1-register automata which checks whether the input
data words contains two positions labeled with a with the same data value (a
is not a key): it non-deterministically moves to the first position labeled with
a with a duplicated data value, stores the data value in its register and then
checks that this value appears again under another position labeled with a.

The complement of this language, all node labeled with a have different data
values, which would be useful for key integrity constraints in the database context
is not expressible with register automata. To prove this, one can show that for
each data word accepted by a given register automata, there exists another
accepted data word that have the same string projection but uses a number of
data values depending only on the automaton (see [20] for more details).

This shows that register automata are not closed under complementation.
They are also not closed under determinization as the first example cannot be
achieved with a deterministic register automata.

The main result for register automata is that emptiness is decidable.
Theorem 3.3. [20] Emptiness of register automata is decidable.

In term of complexity the problem is PSPACE-complete [14]. Without labels it
was shown to be NP-complete in [30]. As illustrated with the examples above,
register automata are quite limited in expressive power. This limitation can also
be formalized with the following proposition which should be contrasted with
the similar one in the case of data automata presented later (Proposition 3.14).

Proposition 3.4. [20,9] Given a language L of data words accepted by a register
automata the language of strings STR(L) is regular.

There exist many obvious extensions of register automata. For instance one could
add alternation or 2-wayness. Unfortunately those extensions are undecidable.
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Theorem 3.5. 1. Universality of register automata is undecidable [28].
2. Emptiness of 1-register 2-way automata is undecidable [12].

An immediate corollary of Theorem 3.5 is:

Corollary 3.6. [28] Inclusion and equivalence of register automata is undecid-
able.

There are several variants that weaken or strengthen the model of register au-
tomata as presented above without affecting much the results. We only briefly
mention two of them. One possible extension is to allow the automata to store a
non-deterministically chosen value from D in one of the register. With this ex-
tension the language of data words such that the data value of the last position
of the word is different from all the other positions can be accepted. Without
it the language is not accepted by a register automata. This model was studied
in [11,22] and is a little bit more robust than the one presented here. In the
model presented above the automata knows the equality type of the current
data value with all the registers. One possible weakening of the model is to allow
only an equality test of the current data value with a fix register. That is the
transitions are of the form (q,a,i) — ¢’ or (¢,a,i) — (¢, j). This setting
was studied in [32]. The language of data words such that the first two data
values are distinct can no longer be accepted [21]. On the other hand this model
has equivalent regular expressions [21]. Another notable property of this weaker
model is that inclusion becomes decidable [32]. To conclude this discussion one
should mention that the model of the register automata as presented above have
algebraic characterizations, see [9,17] for more details.

Trees. To extend this model to binary trees the technical difficulty is to specify
how registers are splited (for the top-down variants) or merged (for the bottom-
up variant). In the top-down case the natural solution is to propagate the content
of the registers to the children of the current node. In the bottom-up case a
function can be included into the specification of the transitions of the automata
which specify, for each register, whether the new value should come from some
register of the left child or from some register of the right one. It is possible to
do this so that the family obtained is decidable and robust in the sense that the
bottom-up variant correspond to the top-down variant. This model has all the
properties of register automata over data words: emptiness is decidable and the
tree projection is regular. We refer to [21] for more details.

3.2 Pebble Automata

Another model of automata uses pebbles instead of registers. The automata
can drop and lift pebbles on any position in the string and eventually compare
the current value with the ones marked by the pebbles. To ensure a “regular”
behavior, the use of pebbles is restricted by a stack discipline. That is, pebbles
are numbered from 1 to k£ and pebble i + 1 can only be placed when pebble ¢
is present on the string. A transition depends on the current state, the current
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label, the pebbles placed on the current position of the head, and the equality
type of the current data value with the data values under the placed pebbles. The
transition relation specifies change of state, and possibly whether the last pebble
is removed or a new pebble is placed. In the following more formal definition we
follow [28] and assume that the head of the automata is always the last pebble.
This does not make much difference in term of expressive power, at least in the
2-way case which is the most natural for this model, but simplifies a lot the
notations:

Definition 3.7. A k-pebble automaton A is a tuple (Q, qo, F, T) where

— @ is a finite set of states; qo € @ is the initial state; F C @ is the set of final
states; and,
— T is a finite set of transitions of the form a — 3, where
e « is of the form (q,a,i, P,V,q), where i € {1,...,k}, a € ¥, PV C
{1,...,4—1}, and
e (3 is of the form (q,d) with ¢ € @ and d is either DROP of LIFT.

Given a data word w, a configuration of A on w is of the form v = [q, J, 0]
where i is the current position in w, ¢ € @ the current state, j € {1,...,k} the
number of pebbles already dropped, and 0 : {1,...,5} — [|w]|] the positions of
the pebbles. Note that the current position always correspond to 6(j). We call 6
a pebble assignment. The initial configuration is yg := [qo, 1, 0], with 6p(1) = 1.
A configuration [q, 7, 6] with ¢ € F is accepting.

A transition (p, a,i, P,V,p) — 3 applies to a configuration v = [q, j, 0], if

l.i=j,p=gq,

2. V. ={l <j | wsy.d= wgg.d} is the set of pebbles placed on a position
which has the same data value than the current position.

3. P={l<j1]6() =0(j)} is the set of pebbles placed at the current position,
and

4. w; = a.

Intuitively, (p, a,i, P,V) — (3 applies to a configuration if pebble 7 is the current
head, p is the current state, V is the set of pebbles that see the same data value
as the top pebble, P is the set of pebbles that sit at the same position as the
top pebble, and the current label seen by the top pebble is a.

A configuration [¢/, j/,6'] is a successor of a configuration v = [g, j, §] if there
is a transition a@ — (p,d) that applies to v such that ¢’ = p and 6’(i) = 6(i), for
all ¢ < 7, and

— if d=DROP, then 7' =j+ 1,8 (j) =0(j) = 0'(j + 1),
— if d=LIFT, then 7' =i — 1.

Note that this implies that when a pebble is lifted, the computation resumes at
the position of the previous pebble.

Example 3.8. The languages of data words such that all nodes labeled with a
have different data values is accepted by a 2-pebble automata as follows. At each
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position labeled with a the automata drops pebble 1 and then check that the
data value never occurs under a position labeled with a to the right of the pebble.
When this is done it comes back to pebble 1 and move to the next position.

Register automata and pebble automata are likely to be incomparable in expres-
sive power. The example above can be expressed by a pebble automata but not
by a register automata. On the other hand, pebble automata have a stack disci-
pline constraint on the use of pebbles while register automata can update their
register in an arbitrary order. Based on this, examples of languages expressible
with register automata but not with pebble automata are easy to construct but
we are not aware of any formal proof of this fact.

Strictly speaking the model presented above is not really 1-way as when it
lifts a pebble the automata proceed at the position of previous pebble. It is also
immediate to extends this model in order to make it 2-way. The advantage of
this definition is that the model is robust:

Theorem 3.9. [28] Pebble automata are determinizable and the 2-way variant
has the same expressive power than its 1-way variant.

But unfortunately the model is too strong in expressive power. In the result
below, recall that with our definition the head of the automata counts as 1
pebble. Therefore in a sense the result is optimal.

Theorem 3.10. [28,12] Emptiness of 2-pebble automata over data words is un-
decidable.

Trees. The most natural way to extend this model to trees is to consider tree
walking automata with pebbles on trees. This model extend the 2-way variant
of pebble automata as presented here in a natural way with moves allowing to
“walk” the tree in all possible directions (up, down, left right). Of course, this
model remains undecidable.

3.3 Data Automata

This model was introduced in [6,7]. It extends the model of register automata,

remains decidable and has better connections with logic. Data automata runs

on data words in two passes. During the first one a letter-to-letter transducers

is run. This transducers does not have access to the data values and change

the label of each position. During the second pass, an automata is run on each

sequence of letters having the same data value, in other words, on each class.
A data automaton D = (A, B) consists of

— anon-deterministic letter-to-letter string transducer A (the base automaton)
with input alphabet X, for some output alphabet I" (letter-to-letter means
that each transition reads and writes exactly one symbol), and

— a non-deterministic string automaton B (the class automaton) with input
alphabet I'.
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A data word w = wq - - - w, is accepted by D if there is an accepting run of A
on the string projection of w, yielding an output string b; - - - b,, such that, for
each class {x1,...,xx} C{1,...,n}, &1 <--- < x, the class automaton accepts
bayyevy oy

Example 3.11. The language of data words such that all positions labeled with
a have different data values can be accepted by a data automaton as follows.
The base automaton does nothing and only copy its input. The class automata
accepts only words containing only one a.

The complement of the above language, the set of all data words containing
two positions labeled with a with the same data value, is done as follows. The
base automata non-deterministically selects two positions labeled with a and
output 1 on each of them and 0 everywhere else. The class automata checks
that each class contains either no 1 or exactly 2.

The language of data words such that there exists two positions labeled with a
and having the same data value but with no positions labeled with b (no matter
what the data value is) in between is accepted by a data automaton. The base
automata outputs 0 on all positions excepts two, labeled with a, that it selects
non-deterministically and on which it outputs 1. It also checks that between the
two selected positions no b occurs. The class automata checks that each class
contains either no 1 or exactly 2.

It is not clear how to do the complement of this language using a data au-
tomata. This suggest that data automata are not closed under complementation
but we are not aware of any formal proof of this result. It will follow from the re-
sults of Section 4 that if they would be closed under complementation then they
would not be effectively closed under complementation, by this we mean that
there would be no algorithm computing the complement of a data automata.

By just looking at the definitions it is not immediate that data automata extends
the model of register automata presented in Section 3.1. But it is indeed the case.

Proposition 3.12. [5] For each register automata there exists a data automaton
accepting the same language.

The main result on data automata is that emptiness remains decidable. We will
use this fact to show decidability of several logics in Section 4.

Theorem 3.13. [7] Emptiness of data automata is decidable.

In order to better understand the expressive power of data automata we show
that the string projection of languages accepted by data automata correspond to
languages accepted to multicounter automata. Recall that for register automata
the string projection remains regular (Proposition 3.4).

We first briefly review the definition of multicounter automata. An e-free
multicounter automaton is a finite automaton extended by a finite set C =
{1,...,n} of counters. It can be described as a tuple (Q, X, C, 4, ¢, F'). The set
of states @, finite alphabet Y| initial state q; € @ and final states F' C @ are
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as in a usual finite automaton. The transition relation J is a finite subset of
Q x X x (dec* (1) inc*(1))iec X Q.

The idea is that in each step, the automaton can change its state and modify
the counters, by incrementing or decrementing them, according to the current
state and the current letter on the input. In a step, the automaton can apply to
each counter ¢ € C' a sequence of decrements, followed by a sequence of incre-
ments. Whenever it tries to decrement a counter of value zero the computation
stops. Besides this, the transition of a multicounter automaton does not depend
on the value of the counters. In particular, it cannot test whether a counter
is exactly zero (otherwise the model would be undecidable). Nevertheless, by
decrementing a counter k times and incrementing it again afterward it can test
whether the value of that counter is at least k.

A configuration of such an automaton is a tuple ¢ = (q, (¢;)icc) € @ x N,
where ¢ is the current state and ¢; is the value of the counter i. A transition

(q,a, (dec® (i)inc'i (i))icc,q') € &

can be applied if the current state is ¢, the current letter is a and for every
counter ¢ € C, the value ¢; is at least k;. The successor configuration is d =
(¢, (c(i) — ki + 1;)icc)- A run over a word w is a sequence of configurations that
is consistent with the transition function §. The acceptance condition is given
by a subset R of the counters C' and the final states. A run is accepting if it
starts in the state ¢; with all counters empty and ends in a configuration where
all counters in R are empty and the state is final.
Emptiness of multicounter automata is known to be decidable [26,23].

Proposition 3.14. [7]

o If L is a language of data words accepted by a data automata then STR(L) a
language of strings accepted by a multicounter automata.

e If L is a language of strings accepted by a multicounter automata then there
exists a language L' of data words accepted by a data automata such that
h(sTR(L')) = L, where h is an erasing morphism.

The constructions of Proposition 3.14 are constructive (the time complexity
requires a tower of 3 exponentials in the first case and is only polynomial in
the second case) and thus Proposition 3.14 implies Theorem 3.13. Therefore the
emptiness problem of data automata is elementary equivalent to the emptiness
problem of multicounter automata which is not yet known to be elementary
(the best known lower-bound being ExpSpace [24] and the best known upper-
bound being non-elementary [26,23]). The precise complexity of Theorem 3.13
is therefore still an open issue.

Trees. This model can be extended to unranked ordered trees as follows. Both
the base automaton and the class automaton are bottom-up tree automaton. The
base automata works as in the word case and reassigns a label to each node. Each
class can now be viewed as an unranked ordered tree by contracting the initial
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tree edges which contains a node not in the class. The class automata is then run
on the resulting trees. Unfortunately decidability of data tree automata remains
an open issue. Data tree automata still have some connection with multicounter
tree automata. It is not clear yet whether the first part of Proposition 3.14
holds or not, but the second one does hold. Therefore showing decidability of
data automata would implies showing decidability of multicounter tree automata
which has eluded all efforts so far (see [13] and the references therein).

3.4 Other Generalizations

We have consider so far only automata for data words or data trees that are based
on the classical notion of finite state automata. It is also possible to consider
more powerful devices for manipulating data words such as pushdown automata.

Historically the first models of pushdown automata over infinite alphabet
were presented in [3] and [19]. Those models extend the notions of Context-Free
grammars and of pushdown automata in the obvious way by allowing infinitely
many rules and infinitely many transition functions, one for each letter in D.
Hence the models are not even finitely presented and decidability does not make
much sense. In term of expressive power, with some technical constraints on
the pushdown automata models (see [19]), both the context-free grammars and
pushdown automata defines the same class of languages.

The most robust decidable notion so far was given in [11] using ideas similar to
register automata. We describe it next. Intuitively the automata has k registers
and makes its choices given, the current state, the label of the current node, and
the equality type of the current data value with the values present in the registers.
The possible actions are: change the current state, update some of the registers
with the current data value, push the values stored into some registers into the
stack together with some finite content, pop the top of the stack. Moreover,
in order to have a robust model with an equivalent context-free grammar, the
model allows e transition which can store into one of the registers a new, non-
deterministically chosen, data value.

Definition 3.15. A k-register pushdown automaton A is a tuple (Q, qo, F, I, 10,
T) where

— Q is a finite set of states; qo € Q is the initial state; F C Q is the set of
final states;

— I is a finite set of labels for stack symbols;

— 70 :{1,...,k} — D is the initial register assignment; and,

— T is a finite set of transitions of the form (q,a, E,v) — (¢',1,s) or (¢,¢, E, )
= (q',1).
Here, i € {1,...,k}, ¢,¢ € Q,a e X, veI',se (I'x{l,...,k})* and
EC{T,1,...,k}.

Given a stack symbol s we denote by s.l and s.d respectively the label in I" and
the data value in D of s. Given a data word w, a configuration of A on w is
a tuple [j,q, 7, pu] where 1 < j < |w| is the current position in the data words,
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q € @ is the current state, 7 : {1,...,k} — D is the current register assignment,
and p € (v x D)* is the current stack content. The initial configuration is
vo = [1,q0,70,€]. A configuration [j,q,7,u] with ¢ € F is accepting. Given

v = [J,q, T, 1] with top stack symbol s, the transition (p, a, E,v) — [ applies to
viffp=gq,wjl=a,sl=r,and E = {l | wj.d =7()} US with S is empty if
wj.d # s.d and is {T} otherwise.

A configuration v’ = [j', ¢, 7/, 1] is a successor of a configuration v = [4, ¢, T, y]
iff there is a transition (q,a, E,v) — (¢, 4,s) that applies to v, 7/(I) = 7(1) for
all 1 #4, 7'(i) = wj.d, j/ = j+ 1 and p’ is p with the top of the stack removed
and replaced by (a1,d;,) -+ (am,d;,,) where s = (a1,41) - (@m,im) and d; is
the current value of register [; or there is a transition (q,a, E,v) — (¢’,4) that
applies to v, 7/ = j, p = p/, and 7’ is obtained from 7 by setting 7/(¢) to some
arbitrary value of D. Based on this, reachable configuration and acceptance of
a data word is defined in the standard way.

Note that we allow € transitions which can introduce non-deterministically a
new symbol in some register. This make the model more robust.

Ezxample 3.16. The language of data words such that the data values form a
sequence ww® where w’ is the reverse sequence of w is accepted by a register
data automata in the obvious way by first pushing the data values into the stack
and then poping them one by one.

The language of data words such that all positions labeled with a have different
data values is not accepted by a register pushdown automata. This uses argument
similar than for register automata. See [11] for more details and more example.

This model of register pushdown automata extends in a natural way the classical
notion of pushdown automata. It can be shown that the good properties of
Context-Free languages can be extended to this model. In particular we have:

Theorem 3.17. [11] Emptiness of register pushdown automata is decidable.

This model is also robust and has an equivalent presentation in term of Context-
Free grammar that we don’t present here. The interested reader will find in [11]
more details and more properties of the model. We conclude with a characteriza-
tion of the projection languages defined by register pushdown automata similar
to Proposition 3.4.

Proposition 3.18. If L is a language accepted by a register pushdown automata
then STR(L) is Context-Free.

4 Logics

The previous section was concerned with finding decidable automata for manip-
ulating words and trees containing data values. In this section we are looking
for declarative decidable tools such as logics.

Data words and data trees can be seen as models for a logical formula.
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In the case of data words, the universe of the model is the set of positions in
the word and we have the following built-in predicates: z ~y, x <y, x =y + 1,
and a predicate a(z) for every a € X. The interpretation of a(z) is that the label
in position z is a. The order < and successor +1 are interpreted in the usual way.
Two positions satisfy  ~ y if they have the same data value. Given a formula
¢ over this signature, we write L(¢) for the set of data words that satisfy the
formula ¢. A formula satisfied by some data word is satisfiable.

In the case of data trees, the universe of the structure is the set of nodes of
the tree with the following predicates available:

— For each possible label a € X, there is a unary predicate a(x), which is true
for all nodes that have the label a.

— The binary predicate  ~ y holds for two nodes if they have the same data
value.

— The binary predicate E_, (z,y) holds for two nodes if x and y have the same
parent node and y is the immediate successor of = in the order of children
of that node.

— The binary predicate E|(z,y) holds if y is a child of x.

— The binary predicates E—, and E are the transitive closures of E_, and E|,
respectively.

For both words and trees, we write FO(~, <,+1) for first-order logic over a
signature containing all the predicates mentioned above for the corresponding
context. We also write FO(~, +1) when the predicates E= and Ej -in the case
of trees- and without < -in the case of words are missing.

A logic L is said to be decidable over a class M of models if, given a sentence
€ L, it is decidable whether there exists a model M € M such that M = ¢.

4.1 First-Order logics

Example 4.1. The language of data words such that all positions labeled with
a have different data values can be expressed in FO(~, <,+1) by Vz,y (a(z) A
a(y) Nz #£y) — x Ay

The complement of the above language, the set of all data words containing
two positions labeled with a having the same data value, is thus 3z,y a(z) A
a(y) Nz £Fyha ~y.

The language of data words where each position labeled with a has a data
value which also appears under a position labeled with b (inclusion dependency)
is expressed in FO(~, <,+1) by Vz3y a(z) — (b(y) Az ~ y).

Let L be the language of data words such that (i) any two positions labeled
with a have a distinct data value, (ii) any two positions labeled with b have a
distinct data value and (iii) the sequence of data values of the positions labeled
a is exactly the same as the sequence of data values labeled with b. L can be
expressed in FO(~, <, +1) as follows. First we use sentences as given in the
first three examples in order to express (i), (ii) and the fact that each data value
appears exactly twice under two positions, one labeled a and one labeled b. Then
the following sentence shows that the sequences are the same: Vz,y,z (a(z) A
a(y) Ne <yAb(z)ANz ~z)— (Fz bla) Nz ~yAz<x).
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The relative expressive power of register and pebble automata with logics has
been studied in [28] over data words. In term of expressive power, FO(~, <, +1)
is not comparable with register automata and it is strictly included into pebble
automata.

As FO(~, <,+1) is a fragment of pebble automata it is natural to wonder
whether it forms a decidable fragment. We write FO¥ for formulas using at most
k variables (possibly reusing them at will). In the examples above note that
the first three are definable in FO?(~, <, +1) while the third one requires three
variables. This last example can be pushed a little bit in order to code PCP.
Therefore we have:

Theorem 4.2. [7] FO*(~, <, +1) is not decidable over data words.

However the two-variable fragment of FO(~, <, +1), which turns out to be often
sufficient for our needs, especially in the database context, is decidable.

Theorem 4.3. [7] FO*(~, <, +1) is decidable over data words.

Theorem 4.3 follows from the fact that any data word language definable by
a formula of FO?(~, <,+1) is accepted by a data word automata described in
Section 3. Actually we can show a stronger result than this. Consider the new
binary predicate 1 which holds true at position z and y if the positions de-
noted by x and y have the same data value and y is the successor of x in their
class. Note that this predicate is not expressible in FO?(~, <, +1). Consider
now the logic EMSO?(~,<,41,%1) which extends FO?(~,<,41,%1) by existen-
tial monadic second-order predicates quantification in front of FO?(~,<,+1,%1)
formulas.

Theorem 4.4. [7] For any data word language L the following are equivalent.

1. L is definable in EMSO?(~,<,+1,%1),
2. L is accepted by a data word automata.

Moreover the translations between EMSOZ(~,<,—|—1,¢1) formulas and data word
automata are effective.

This immediately yields:
Corollary 4.5. EMSO?(~,<,+1,%1) is decidable over data words.

Again the precise complexity is not known as it more or less correspond to
deciding emptiness of multicounter automata.

Note that adding a little bit more of arithmetic, like assuming that D is
linearly order and that the logic contains an extra binary predicate checking
for this order among data values, yields undecidability even for the 2-variables
fragment of FO [7].
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Trees. The step from data words to data trees seems non trivial and we don’t
yet know whether Theorem 4.4 holds in the data tree case. In particular we
don’t know whether languages definable in FO?(~, <,41) are always accepted
by a data tree automata. On the other hand FOQ(N, <, +1) is expressive enough
to simulate multicounter tree automata therefore satisfiability of FO*(~, <, +1)
over data trees is likely to be a difficult problem.

On the other hand we can show:

Theorem 4.6. [6] FO*(~, +1), and therefore EMSO?(~, +1), is decidable over
data trees.

The proof of Theorem 4.6 is quite involved and does not use automata but
rather some kind of puzzles. It is shown, using this puzzles, that any satisfiable
sentences of FO?(~, +1) has a tame model and that deciding whether a sentence
has a tame model is decidable. The complexity obtained this way is SNEXPTIME
which is possibly not optimal.

4.2 LTL with Freeze Quantifier

This logic was studied in the context of data words in [14,15]. Roughly speaking
it extends the linear temporal logic LTL with a freeze operator which binds the
data value of the current position in the data words to a register for later use.

We consider the temporal operators X for NExT, X! for PREVIOUS, F for
SOMETIME IN THE FUTURE, F~! for SOMETIME IN THE PAST, U for UNTIL,
U~! for PREVIOUS. As usual we regard G as an abbreviation for —F-. We
define LTL}L using the following grammar:

Su=Tlal| [, S|SAS|=S]0(S..9) | 1«
where r € [1,n],a € ¥ and O is a temporal operatorin {X, X1, F, F~1 U, U~}

We only consider well-formed formulas where T, is only used in the scope of
a |,. When we want to use only a subset O of the temporal operators then we
write LTLY (O).

The semantic is classical for the Boolean and temporal operators. The formula
a holds at any position whose label is a. The formula |, S stores the data value
of the current position in the register r and then checks for S starting at the
current position. The formula T, checks that the data values stored in the register
r equals the data value of the current position.

Ezxample 4.7. The language of data words containing two positions labeled with

a having the same data value, can be expressed in LTL! by F(aA |1 XF(aA T1)).
The complement of the above language, data words such that all positions

labeled with a have different data values, is thus = F(aA |1 XF(aA T1)).

The language of data words where each position labeled with a has a data
value which also appears under a position labeled with b (inclusion dependency)
is expressed in LTL! by G(a — (11 (F(bA T1) V F7H(bA T1)))).

The language of data words such that any two distinct positions labeled with
a and having the same data value have a b in between can be expressed in LTL{
by: G((an 11 F(an 11)) — (=(an 11)UD))
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Theorem 4.8. [14,15]

1. LTLY(X,U) is decidable over data words.
2. LTLY(X, F) is undecidable over data words.
3. LTLY(X, F, F~') is undecidable over data words.

The logics LTL} (X, U) and FO?*(~, <, +1) are incomparable. Indeed the third
example above (inclusion dependency) is expressible in FO?(~, <,+1) but not
in LTL! without past temporal operators. On the other hand the last example
above is expressible in LTL} (X, U) but not in FO?*(~, <,+1) (and most likely
this property is also not expressible using a data automaton).

There exists a fragment of LTL% which correspond to FO?(~, <, +1). A LTL%
formula is said to be simple if any temporal operator is immediately preceded by
a |1 and there are no occurrences of | operators. Then simple—LTL{ (X, X1 X2
F,X~2F~1) has exactly the same expressive power than FO?(~, <, +1). This
fact was first mentioned in [14]. The translations in both directions are effective
and use the same ideas as in [16].

Trees. The extension of this ideas to trees, using languages like CTL, remains
to be done.

5 Conclusion

We have presented several models of decidable automata and logics over data
words and data trees. The logical approach has the advantage of compositionality
and has many other interesting closure properties which makes it easier for
coding problems into it. The complexities obtained for logics are usually quite
high which makes them quite unsuited for practical applications. However it is
possible to obtain lower complexities by imposing some extra constraints, see for
instance [6,7].

Several of the results presented in this paper were extended to infinite data
words. This is useful in the context of verification in order to code infinite com-
putations. For instance Theorem 4.3 have been extended over infinite data words
in [7].

The tree case is usually a lot more difficult than the word case. If several
decidability results were obtained over data trees, like for register automata or
FO?(~,+1), many decidability questions remains open, like the decidability of
FO?(~, <, +1).

The decidability result of EMSO?(~,+1) over data trees presented in Theo-
rem 4.6 was used in a database context in [6] in order to show decidability of the
inclusion problem of certain fragments of XPath in the presence of DTDs. It was
also used to show decidability of validation of DTDs in the presence of unary
key and foreign key constraints [6]. Those two results were obtained via different
coding of the problems into data trees and EMSO?(~,+1). This builds on the
fact that any regular tree language (and therefore the structural part of DTDs)
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can be expressed in EMSO?(~, +1) (without using the predicate ~) and XPath
1.0 is also intimately related with first-order logics with two variables [25].

Altogether we hope that we have convinced the reader that there is a need
for more decidable automata models and more decidable logics over data words
and data trees. This is a challenging topic which has a lot of applications, in
particular in database and in program verification.

Acknowledgment. We thanks Mikotaj Bojanczik, Anca Muscholl, and Thomas
Schwentick for all the interesting discussions we had while writing this paper.
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Abstract. The goal of this note is to provide a background and refer-
ences for the invited lecture presented at Computer Science Logic 2006.
We briefly discuss motivations that led to the emergence of nonmonotonic
logics and introduce two major nonmonotonic formalisms, default and
autoepistemic logics. We then point out to algebraic principles behind
the two logics and present an abstract algebraic theory that unifies them
and provides an effective framework to study properties of nonmono-
tonic reasoning. We conclude with comments on other major research
directions in nonmonotonic logics.

1 Why Nonmonotonic Logics

In the late 1970s, research on languages for knowledge representation, and con-
siderations of basic patterns of commonsense reasoning brought attention to
rules of inference that admit exceptions and are used only under the assumption
of normality of the world in which one functions or to put it differently, when
things are as expected.

For instance, a knowledge base concerning a university should support an
inference that, given no information that might indicate otherwise, if Dr. Jones
is a professor at that university, then Dr. Jones teaches. Such conclusion might
be sanctioned by an inference rule stating that normally university professors
teach. In commonsense reasoning rules with exceptions are ubiquitous. Planning
our day and knowing we are to have lunch with a friend, we might use the
following rule: normally, lunches end by 1:00pm. If nothing we know indicates
that the situation we are in is not normal, we use this rule and conclude that
our lunch will be over by 1:00pm.

The problem with such rules is that they do not lend themselves in any di-
rect way to formalizations in terms of first-order logic, unless all exceptions are
known and explicitly represented — an unrealistic expectation in practice. The
reason is that standard logical inference is monotone: whenever a sentence « is
a consequence of a set T of sentences then « is also a consequence of any set
of sentences T’ such that T C T’. On the other hand, it is clear that reasoning
with normality rules when complete information is unavailable, is not monotone.
In our lunch scenario, we may conclude that the lunch will be over by 1:00pm.
However, if we learn that our friend will be delayed, the normality assumption
is no longer valid our earlier inference is unsupported; we have to withdraw it.

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 58-71, 2006.
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Such reasoning, where additional information may invalidate conclusions, is
called nonmonotonic. As we briefly noted above, it is common. It has been a focus
of extensive studies by the knowledge representation community since the early
eighties of the last century. This research developed along two major directions.

The first direction is concerned with the design of nonmonotonic logics —
formalisms with direct ways to model rules with exceptions and with ways to
use them. Arguably, two most studied nonmonotonic formalisms are default logic
[1] and autoepistemic logic [2,3]. These two logics are the focus of this note. Our
main goal in this paper is to introduce default and autoepistemic logics, identify
algebraic principles that underlie them, and show that both logics can be viewed
through a single abstract unifying framework of operators on complete lattices.

The second direction focused on studies of nonmonotone inference relations
either in terms of classes of models or abstract postulates, the two perspectives
being quite closely intertwined. Circumscription [4] and, more generally, pref-
erence logics [5] fall in this general research direction, as do studies of abstract
properties of nonmonotonic inference relations [6,7,8,9]. Although outside our fo-
cus, for the sake of completeness, we will provide a few comments on preference
logics and nonmonotonic inference relations in the last section of the paper.

2 Default Logic — An Introduction

In his ground-breaking paper [1] Ray Reiter wrote: Imagine a first order formal-
1zation of what we know about any reasonably complex world. Since we cannot
know everything [...] — there will be gaps in our knowledge — this first order the-
ory will be incomplete. [...] The role of a default is to help fill in some of the gaps
in the knowledge base [...]. Defaults therefore function somewhat like meta-rules:
they are instructions about how to create an extension of this incomplete theory.
Those formulas sanctioned by the defaults and which extend the theory can be
viewed as beliefs about the world. Now in general there are many different ways
of extending an incomplete theory, which suggests that the default rules may be
nondeterministic. Different applications of the defaults yield different extensions
and hence different sets of beliefs about the world.
According to Reiter defaults are meta-rules of the form “in the absence of
any information to the contrary, assume ...” (hence, they admit exceptions), and
default reasoning consists of applying them. Reiter’s far-reaching contribution is
that he provided a formal method to do so.
We will now present basic notions of default logic. We consider the language
L(At) (or simply, £) of propositional logic determined by a set At of proposi-
tional variables. A default is an expression
d:a.ﬁl,...,ﬂk’ (1)

Y
where o, §;, 1 < i < k, and v are formulas from £. We say that «a is the
prerequisite, 3;, 1 < i < k, are justifications, and - is the consequent of default
d. If « is a tautology, we omit it from the notation. For a default d, we write



60 M. Truszczynski

p(d), ¢(d) and j(d) for its prerequisite, consequent, and the set of justifications,
respectively.

An informal reading of a default (1) is: conclude 7 if a holds and if all justifica-
tions B; are possible. In other words, to apply a default and assert its consequent,
we must derive the prerequisite and establish that all justifications are possible.
We will soon formalize this intuition. For now, we note that we can encode the
rule arising in the university example by the following default:

profy: teachesy
teaches

saying that if prof; holds and it is possible that teaches; holds (no information
contradicts teaches ), then teaches; does hold.

A default theory is a pair (D, W), where D is a set of defaults and W is a
theory in the language £. The role of W is to represent our knowledge (which is,
in general, incomplete) while the role of defaults in D is to serve as “meta-rules”
we might use to fill in gaps in what we know.

Let A = (D,W) be a default theory and let S be a propositional theory
closed under consequence. If we start with S as our beliefs, A could be used
to revise them. The revised belief set should contain W. Further, it should be
closed under propositional consequence (to be a belief set) and under those
defaults whose justifications are not contradicted by the current belief set S
(are possible with respect to S). This revision process can be formalized by
an operator I'a such that for a any set S of formulas (not necessarily closed
under propositional consequence), I'a(S) is defined as the inclusion-least set U
of propositional formulas satisfying the following conditions:

1. U is closed under propositional provability

2. WCU

3. for every default d € D, if p(d) € U and for every § € j(d), S I/ =3, then
c(d) eU.

Fixpoints of the operator I'a represent belief sets (by (1) they are indeed closed
under propositional consequence) that are in a way stable with respect to A —
they cannot be revised away. Reiter [1] proposed them as belief sets associated
with A and called them eztensions.

Definition 1. Let A be a default theory. A propositional theory S is an exten-
sion of A if S = T'a(S).

Let us look again at the university scenario, which we expand slightly. We know
that Dr. Jones is a professor. We also know that if Dr. Jones is chair of the
department then Dr. Jones does not teach. Finally we have the default rule
saying that normally Dr. Jones teaches. This knowledge can be captured by a
default theory (D, W), where

W = {profs, chair; D —teaches}
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and
profy: teachesy
D= .
teaches y

One can check that this default theory has only one extension and it contains
teaches ;. However, if we append W by additional information that Dr. Jones is
chair of the department (chair ), then the resulting default theory has also one
extension but it does not contain teaches;, anymore (it contains —teaches ).
Thus, default theories with the semantics of extension can model nonmonotonic
inferences.

Much of the theory of default logic is concerned with properties of extensions.
A detailed studies of extensions can be found in [10,11].

3 Autoepistemic Logic

Autoepistemic logic is a logic in a modal propositional language Ly (At) (or
simply, L), where At is the a of propositional variables and K stands for the
modal operator. It was proposed to formalize how a rational agent with perfect
introspection might construct belief sets [2,3].

The first modal nonmonotonic logic was introduced by McDermott and Doyle
[12]. They proposed to use modal-free formulas to represent facts about an appli-
cation domain, and “proper” modal formulas to encode nonmonotonic reasoning
patterns. An informal reading of a modal formula K« is “« is believed” or “a
is known.” It suggests that a formula =K -« D [ could be read “if -« is not
believed (or, to put it differently, if « is possible) then 8. Given this intuition,
McDermott and Doyle [12] proposed to use the formula =K—a D § to repre-
sent a reasoning pattern “in the absence of information contradicting c, infer
(7 and gave a method to reason with such formulas supporting nonmonotonic
inferences.

The logic of McDermott and Doyle was found to have counterintuitive prop-
erties [13,2,3]. Moore proposed autoepistemic logic [2,3] as a way to address this
problem. As in the case of default logic, the goal was to describe a mechanism to
assign to a theory belief sets that can be justified on its basis. Unlike in default
logic, a specific objective for autoepistemic logic was to formalize belief sets a
rational agent reasoning with perfect introspection might form.

Given a theory T C L, Moore [3] defined an ezpansion of T to be a theory
E C Lk such that

E=Cn(TU{Ka|ac€ E}U{-Kal|a¢E})

(Cn stands for the operator of propositional consequence which treats formulas
K« as propositional variables). Moore justified this fixpoint equation by arguing
that expansions should consist precisely of formulas that can be inferred from T
and from formulas obtained by positive and negative introspection on the agent’s
beliefs.

Moore’s expansions of 7" indeed have properties that make them adequate for
modeling belief sets a rational agent reasoning with perfect introspection may
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built out of a theory T'. In particular, expansions satisfy postulates put forth by
Stalnaker [14] for belief sets in a modal language:

B1: Cn(FE) C E (rationality postulate)
B2: if a € E, then Ka € E (closure under positive introspection)
B3: if a ¢ E, then K« € E (closure under negative introspection).

Although motivated differently, autoepistemic logic can capture similar rea-
soning patterns as default logic does. For instance, the university example can
be described in the modal language by a single theory

T = {profys,chairy D —teaches, Kprof; AN =K —teachesj D teaches;}.

This theory has exactly one expansion and it contains teaches;. When ex-
tended with chairy, the new theory also has just one expansion but it contains
—teachesy.

Examples like this one raised the question of the relationship between default
and autoepistemic logics. Konolige suggested to encode a default

azﬂlw'wﬁk
Y

d:

with a modal formula
k(d)=KaA-K-8 A...N=K=0; D~
and to represent a default theory A = (D, W) by a modal theory
k(A) =W U{k(d): d € D}.

The translation seemed intuitive enough. In particular, it worked in the uni-
versity example in the sense that extension of the default logic representation
correspond to expansions of the modal logic representation obtained by trans-
lating the default logic one. However, it turned not to align extensions with
expansions in general (a default theory ({¥7?},0) has one extension but its

modal counterpart has two expansions).

4 Default and Autoepistemic Logics — Algebraically

Explaining the relationship between the two logics became a major research
challenge. We will present here a recent algebraic account of this relationship
[15]. As the first step, we will describe expansions and extensions within the
framework of operators on the lattice of possible-world structures.

A possible-world structure is a set (possibly empty) of truth assignments to
atoms in At. Possible-world structures can be ordered by the reverse set inclu-
sion: for Q, Q" e W, Q C Q' if Q' C Q. The ordering C can be thought of as an
ordering of increasing knowledge. As we move from one possible-world structure
to another, greater with respect to C, some interpretations are excluded and
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our knowledge of the world improves. We denote the set of all possible-world
structures with W. One can check that (W, ) is a complete lattice.

A possible-world structure @@ and an interpretation I, determine the truth
function Hg,; inductively as follows:

1. Hg.1(p) = I(p), if p is an atom.

2. Hor(p1 Ap2) =t if Ho 1(p1) =t and Hg,1(p2) = t. Otherwise, Hg, (1 A
902) = f

3. HQJ((,Ol V (pz) =t if HQJ((,Ol) =t or HQJ((,DQ) = t. Otherwise, HQJ((,Ol V
902) = f

4. Ho.r(—p) =t if Hg,1(p) = f. Otherwise, Hg 1(¢) = f.

5. Ho,1(Kp) = t, if for every interpretation J € Q, Hg, s(¢) = t. Otherwise,
HQJ(K(,O) = f.

It is clear that for every formula ¢ € L, the truth value Hg, ;(K¢) does
not depend on I. Thus, and we will denote it by Ho (K ), dropping I from the
notation. The modal theory of a possible-world structure @, denoted by Thi(Q),
is the set of all modal formulas that are believed in Q). Formally,

Thi(Q) ={¢: Ho(Kyp) = t}.
The (modal-free) theory of @, denoted Th(Q), is defined by
Th(Q) =Thk(Q)N L.

(As an aside, we note here a close relation between possible-world structures and
Kripke models with universal accessibility relations.)

Default and autoepistemic logics can both be defined in terms of fixpoints
of operators on the lattice (W, C). A characterization of expansions in terms
of fixpoints of an operator on W has been known since Moore [2]. Given a
theory T C Lx and a possible-world structure @, Moore defined a possible-
world structure D (Q) as follows:

Dr(Q)=A{I:Hgi(p) =t, for every ¢ € T}.

The intuition behind this definition is as follows (perhaps not coincidentally,
as in the case of default logic, we again refer to belief-set revision intuitions).
The possible-world structure D (Q) is a revision of a possible-world structure
Q. This revision consists of the worlds that are acceptable given the constraints
on agent’s beliefs captured by T'. That is, the revision consists precisely of these
worlds that make all formulas in T true (in the context of  — the current
belief state). Fixpoints of the operator Dy represent “stable” belief sets — they
cannot be revised any further and so take a special role in the space of belief
sets. It turns out [3] that they correspond to expansions!

Theorem 1. Let T C Lx. A theory E C Lk is an expansion of T if and only
if E =Thg(Q), for some possible-world structure @ such that Q = Dp(Q).
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A default theory defines a similar operator. With the Konolige’s interpretation
of defaults in mind, we first define a truth function on the set of all propositional
formulas and defaults. Namely, for a propositional formula ¢, we define

HE () = (),
and for a default d = ¢ 51,;""6"‘, we set
HE (d) =t
if at least one of the following conditions holds:

1. there is J € @ such that J(a) =f£.
2. there is i, 1 <i < k, such that for every J € @, J(f5;) =f.
3. I(v)=t

(we set Hélyl(d) = f, otherwise).
Given a default theory A = (D, W), for a possible-world structure @, we
define a possible-world structure Da(Q) as follows:

Da(Q) ={I:Hq,i(¢) =t, for every p € WU D}.

Do fixpoints of D 4 correspond to extensions? The answer is no. Fixpoints of D A
correspond to weak extensions [16], another class of belief sets one can associate
with default theories.

To characterize extensions a different operator is needed. The following def-
inition is due (essentially) to Guerreiro and Casanova [17]. Let A = (D, W)
be a default theory and let @ be a possible-world structure. We define I'4 (Q)
to be the least possible-world structure Q' (with respect to C) satisfying the
conditions:

1. W CTh(Q")
2. for every default d € D, if p(d) € Th(Q') and for every 8 € j(d), =0 ¢
Th(Q), then ¢(d) € Th(Q").

One can show that I/, (Q) is well defined. Moreover, for every possible-world
structure @,

Th(I'A(Q)) = L'a(Th(Q))

Consequently, we have the following result connecting fixpoints of I', (Q) and
extensions of A [17].

Theorem 2. Let A be a default theory. A theory S C L is an extension of A if
and only if S = Th(Q) for some possible-world structure Q such that Q = I'y (Q).

Several questions arise. Is there a connection between the operators D and
I'\? Is there a counterpart to the operator I, in autoepistemic logic? Can
these operators, their fixpoints and their interrelations be considered in a more
abstract setting? What are abstract algebraic principles behind autoepistemic
and default logics? We provide some answers in the next section.
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5 Approximation Theory

Possible-world structures form a complete lattice. As we argued, default and
autoepistemic theories determine “revision” operators on this lattice. These op-
erators formalize a view of a theory (default or modal) as a device for revising
possible-world structures. Possible-world structures that are stable under the
revision or, more formally, which are fixpoints of the revision operator give a
semantics to the theory (of course, with respect to the revision operator used).

Operators on a complete lattice of propositional truth assignments and their
fixpoints were used in a similar way to study the semantics of logic programs with
negation. Fitting [18,19,20] characterized all major 2-, 3- and 4-valued semantics
of logic programs, specifically, supported-model semantics [21], stable-model se-
mantics [22], Kripke-Kleene semantics [18,23] and well-founded semantics [24],
in terms of fixpoints of the van Emden-Kowalski operator [25,26] and its gener-
alizations and variants.

These results suggested the existence of more general and abstract princi-
ples underlying these characterizations. [27,28] identified them and proposed a
comprehensive unifying abstract framework of approzrimating operators as an al-
gebraic foundation for nonmonotonic reasoning. We will now outline the theory
of approximating operators and use it to relate default and autoepistemic logics.
For details, we refer to [27,28].

Let (L,<) be a poset. An element x € L is a pre-fizpoint of an operator
O:L — Lif O(x) < x; xis a fixzpoint of O if O(x) = x. We denote a least
fixpoint of O (if it exists) by Ifp(O).

An operator O : L — L is monotone if for every x,y € L such that x < y,
O(z) < O(y). Monotone operators play a key role in the algebraic approach to
nonmonotonic reasoning. Tarski and Knaster’s theorem asserts that monotone
operators on complete lattices (from now on L will always stand for a complete
lattice) have least fixpoints [29].

Theorem 3. Let L be a complete lattice and let O be a monotone operator on
L. Then O has a least fizpoint and a least pre-fixpoint, and these two elements
of L coincide. That is, we have lfp(O) = AN{z € L: O(z) < z}.

The product bilattice [30] of a complete lattice L is the set L? = L x L with the
following two orderings <, and <:

Lo (z,y) <p (2,y) if <2’ and y' <y
2. (z,y) < (2',y") if <z’ andy <y’

Both orderings are complete lattice orderings in L?. For the theory of approxi-
mating operators, the ordering <,, is of primary importance.

If (z,y) € L? and x < z < y, then (x,y) € L? approzimates z. The “higher”
a pair (z,y) in L? with respect to <,, the more precise estimate it provides to
elements it approximates. Therefore, we call this ordering the precision ordering.
Most precise approximations are provided by pairs (z,y) € L? for which z = y.
We call such pairs ezxact.
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For a pair (z,y) € L?, we define its projections as:
(r,y)1 ==z and (z,9)2 = y.
Similarly, for an operator A : L? — L2, if A(x,y) = (2’,3), we define
Az, y) =2 and Alx,y)2 =y

Definition 2. An operator A: L? — L? is symmetric if for every (x,y) € L?,
Az, y)1 = Ay, x)2; A is approximating if A is symmetric and <,-monotone.

Every approximating operator A on L? maps exact pairs to exact pairs. Indeed,
A(z,z) = (A(z, x)1, A(z, x)2) and, by the symmetry of A, A(z,z)1 = Az, x)s.

Definition 3. If A is an approximating operator and O is an operator on L
such that for every x € L A(x,xz) = (O(z),0(x)), then A is an approximating
operator for O.

Let A: L? — L? be an approximating operator. Then for every y € L, the
operator A(-,y)1 (on the lattice L) is <-monotone. Thus, by Theorem 3, it has
a least fixpoint. This observation brings us to the following definition.

Definition 4. Let A: L? — L? be an approxzimating operator. The stable oper-
ator for A, Ca, is defined by

Ca(z,y) = (Caly), Ca()),

where Ca(y) = Up(A(,y)1) (or equivalently, as A is symmetric, Ca(y) =
lfp(A(y,-)2))-

The following result states two key properties of stable operators.
Theorem 4. Let A: L? — L? be an approzimating operator. Then

1. Ca is <p-monotone, and
2. ZfCA<$7y) = ($7y)7 then A(l‘,y) = (l‘,y)

Operators A and C4 are <,-monotone. By Theorem 3, they have least fixpoints.
We call them the Kripke-Kleene and the well-founded fixpoints of A, respectively
(the latter term is justified by Theorem 4).

Let A be an approximating operator for an operator O. An A-stable fixpoint
of O is any element x such that (z,x) is a fixpoint of C4. By Theorem 4, if (z,x)
is a fixpoint of C4 then it is a fixpoint of A and so, x is a fixpoint of O. Thus,
our terminology is justified. The following result gathers some basic properties
of fixpoints of approximating operators.

Theorem 5. Let O be an operator on a complete lattice L and A its approxi-
mating operator. Then,

1. fizpoints of the operator C4 are minimal fixpoints of A (with respect to the
ordering < of L?); in particular, A-stable fizpoints of O are minimal fixpoints

of O
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2. the Kripke-Kleene fixpoint of A approximates all fixpoints of O
3. the well-founded fixpoint of A approzimates all A-stable fixpoints of O

How does it all relate to default and autoepistemic logic? In both logics opera-
tors Do and Dr have natural generalizations, D and D, respectively, defined
on the lattice W? — the product lattice of the lattice W of possible-world struc-
tures [15]. One can show that D and Dr are approximating operators for the
operators D 4 and Dr. Fixpoints of operators D and D7 and their stable coun-
terparts define several classes of belief sets one can associate with default and
autoepistemic theories.

Exact fixpoints of the operators Da and Dy (or, more precisely, the corre-
sponding fixpoints of operators D and Dr) define the semantics of expansions
(in the case of autoepistemic logic, proposed originally by Moore; in the case
of default logic, expansions were known as weak extensions [16]). The stable
fixpoints of the operators Do and Dy define the semantics of extensions (in
the case of default logic, proposed originally by Reiter, in the case of autoepis-
temic logic the concept was not identified until algebraic considerations in [15]
revealed it). Finally, the Kripke-Kleene and the well-founded fixpoints provide
three-valued belief sets that approximate expansions and extensions (except for
[31], these concepts received essentially no attention in the literature, despite
their useful computational properties [15]).

Moreover, these semantics are aligned when we cross from default to au-
toepistemic logic by means of the Konolige’s translation. One can check that the
operators Da and Dy ) coincide. The Konolige’s translation preserves expan-
sions, extensions, the Kripke-Kleene and the well-founded semantics. However,
clearly, it does not align default extensions with autoepistemic expansions. Dif-
ferent principles underlie these two concepts. Expansions are fixpoints of the
basic revision operator D or D, while extensions are fixpoints of the stable
operators for D or D, respectively.

Properties of fixpoints of approximating operators we stated in Theorems 4
and 5 specialize to properties of expansions and extensions of default and au-
toepistemic theories. One can prove several other properties of approximating
operators that imply known or new results for default and autoepistemic logics.
In particular, one can generalize the notion of stratification of a default (au-
toepistemic) theory to the case of operators and obtain results on the existence
and properties of extensions and expansions of stratified theories as corollaries
of more general results on fixpoints of stratified operators [32,33].

Similarly, one can extend to the case of operators concepts of strong and
uniform equivalence of nonmonotonic theories and prove characterization results
purely in the algebraic setting [34].

6 Additional Comments

In this note, we focused on nonmonotonic logics which use fixpoint conditions
to define belief sets and we discussed abstract algebraic principles behind these
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logics. We will now briefly mention some other research directions in nonmono-
tonic reasoning.

Default extensions are in some sense minimal (cf. Theorem 5(1)) and mini-
mality was identified early as one of the fundamental principles in nonmonotonic
reasoning. McCarthy [4] used it to define circumscription, a nonmonotonic logic
in the language of first-order logic in which entailment is defined with respect to
minimal models only. Circumscription was extensively studied [35,36]. Compu-
tational aspects were studied in [37,38,39]; connections to fixpoint-based logics
were discussed in [40,41,42].

Preferential models [5,8] generalize circumscription and provide a method
to define nonmonotonic inference relations. Inference relations determined by
preferential models were shown in [8] to be precisely inference relations satisfying
properties of Left Logical Equivalence, Right Weakening, Reflexivity, And, Or
and Cautious Monotony. Inference relations determined by ranked preferential
models were shown in [9] to be precisely those preferential inference relations
that satisfy Rational Monotony.

Default conditionals that capture statements “if « then normally 37 were
studied in [43,9,44]. [9,44] introduce the notion of rational closure of sets of
conditionals as as a method of inference ([44] uses the term system Z).

Default extensions and autoepistemic expansions also define nonmonotonic
inference relations. For instance, given a set of defaults D, we might say that a
formula (8 can be inferred from a formula « given D if § is in every extension
of the default theory (D, {a}). A precise relationship (if any) between this and
similar inference relations based on the concept of extension or expansion to
preferential or rational inference relations is not know at this time. Discovering
it is a major research problem.

We conclude this paper by pointing to several research monographs on non-
monotonic reasoning [45,46,10,47,11,48,49,50].
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Abstract. A type-based approach to termination uses sized types: an
ordinal bound for the size of a data structure is stored in its type. A
recursive function over a sized type is accepted if it is visible in the
type system that recursive calls occur just at a smaller size. This ap-
proach is only sound if the type of the recursive function is admissible,
i.e., depends on the size index in a certain way. To explore the space
of admissible functions in the presence of higher-kinded data types and
impredicative polymorphism, a semantics is developed where sized types
are interpreted as functions from ordinals into sets of strongly normaliz-
ing terms. It is shown that upper semi-continuity of such functions is a
sufficient semantical criterion for admissibility. To provide a syntactical
criterion, a calculus for semi-continuous function is developed.

1 Introduction

Termination of computer programs has received continuous interest in the his-
tory of computer science, and classical applications are total correctness and
termination of partial evaluation. In languages with a notion of computation on
the type-level, such as dependently-typed languages or rich typed intermediate
languages in compilers [11], termination of expressions that compute a type is
required for type checking and type soundness. Further, theorem provers that are
based on the Curry-Howard Isomorphism and offer a functional programming
language to write down proofs usually reject non-terminating programs to en-
sure consistency. Since the pioneering work of Mendler [15], termination analysis
has been combined with typing, with much success for strongly-typed languages
[14,6,13,19,7,9]. The resulting technique, type-based termination checking, has
several advantages over a purely syntactical termination analysis: (1) It is ro-
bust w.r.t. small changes of the analyzed program, since it is working on an
abstraction of the program: its type. So if the reformulation of a program (e.g.,
by introducing a redex) still can be assigned the same sized type, it automat-
ically passes the termination check. (2) In design and justification, type-based
termination rests on a technology extensively studied for several decades: types.
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(3) Type-based termination is essentially a refinement of the typing rules for re-
cursion and for introduction and elimination of data. This is orthogonal to other
language constructs, like variants, records, and modules. Thus, a language can
be easily enriched without change to the termination module. This is not true
if termination checking is a separate static analysis. Orthogonality has an espe-
cially pleasing effect: (4) Type-based termination scales to higher-order functions
and polymorphism. (5) Last but not least, it effortlessly creates a termination
certificate, which is just the typing derivation.

Type-based termination especially plays its strength when combined with
higher-order datatypes and higher-rank polymorphism, i.e., occurrence of V to
the left of an arrow. Let us see an example. We consider the type of generalized
rose trees GRose FFA parameterized by an element type A and the branching
type F. It is given by two constructors:

leaf : GRose F'A
node: A — F (GRose FFA) — GRose F A

Generalized rose trees are either a leaf or a nodea fr of a label a of type A and
a collection of subtrees fr of type F'(GRose F'A). Instances of generalized rose
trees are binary trees (FA = A x A), finitely branching trees (FA = List A),
or infinitely branching trees (FFA = Nat — A). Programming a generic equality
function for generalized rose trees that is polymorphic in F' and A, we will end
up with the following equations:

EqA=A — A — Bool

eqGRose : (VA.Eq A — Eq(FA)) — VA.Eq A — Eq (GRose F'A)

eqGRose eqF eqA leaf leaf = true
eqGRose eqF egA (node a fr) (node a’ fr') = (eqA a a’) A

(eqF (eqGRose eqF eqA) fr fr')
eqGRose eqF eqA = false

The generic equality eqGRose takes two parametric arguments, eqF' and egA.
The second one is a placeholder for an equality test for type A, the first one
lifts an equality test for an arbitrary type A to an equality test for the type F A.
The equality test for generalized rose trees, eqGRose eqF' eqA, is then defined by
recursion on the next two arguments. In the case of two nodes we would expect
a recursive call, but instead, the function itself is passed as an argument to eqF,
one of its own arguments! Nevertheless, eqGRose is a total function, provided its
arguments are total and well-typed. However, with traditional methods, which
only take the computational behavior into account, it will be hard to verify
termination of eqGRose. This is due to the fact that the polymorphic nature of
eqF plays a crucial role. It is easy to find an instance of eqgF' of the wrong type
which makes the program loop. Take, for instance:

eqF : Eq (GRose F'Nat) — Eq (F (GRose F' Nat))
eqF eq fr fr' = eq (node 0 fr) (node 0 fr')
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A type-based termination criterion however passes eqGRose with ease: Con-
sider the indexed type GRose’ F'A of generalized rose trees whose height is smaller
than ¢. The types of the constructors are refined as follows:

leaf :VFVAV:. GRose't! FA
node : VFVAV:. A — GRose' FA — GRose' ™ F A

When defining eqGRose for trees of height < 2+ 1, we may use eqGRose on trees
of height < 1. Hence, in the clause for two nodes, term eqGRose eqF' eqA has type
Eq (GRose' F'A), and eqF (eqGRose eqF eqA) gets type Eq (F (GRose' F'A)), by
instantiation of the polymorphic type of eqF. Now it is safe to apply the last
expression to fr and fr’ which are in ' (GRose" F'A), since node a fr and node a’ fr’
were assumed to be in GRose' ™ F A.

In essence, type-based termination is a stricter typing of the fixed-point com-
binator fix which introduces recursion. The unrestricted use, via the typing rule
(1), is replaced by a rule with a stronger hypothesis (2):

f:A—A Vi AQr) = A+ 1)

(1) fixf:A fix f : ¥n. A(n)

(2)
Soundness of rule (2) can be shown by induction on n. To get started, we need to
show fix f : A(0) which requires A(2) to be of a special shape, for instance A(z) =
GRose' F' B — C' (this corresponds to Hughes, Pareto, and Sabry’s bottom check
[14]). Then A(0) denotes functions which have to behave well for all arguments
in GRose" F' B, i.e., for no arguments, since GRose’ F' B is empty. Trivially, any
program fulfills this condition. In the step case, we need to show fix f : A(n+1),
but this follows from the equation fix f = f (fix f) since f : A(n) — A(n + 1),
and fix f : A(n) by induction hypothesis.

In general, the index ¢ in A(2) will be an ordinal number. Ordinals are useful
when we want to speak of objects of unbounded size, e.g., generalized rose
trees of height < w that inhabit the type GRose™ F'A. Even more, ordinals are
required to denote the height of infinitely branching trees: take generalized rose
trees with 'A = Nat — A. Other examples of infinite branching, which come
from the area of inductive theorem provers, are the W-type, Brouwer ordinals
and the accessibility predicate [17].

In the presence of ordinal indices, rule (2) has to be proven sound by transfinite
induction. In the case of a limit ordinal A\, we have to infer fix f : A(A\) from the
induction hypothesis fix f : Voo < A. A(«). This imposes extra conditions on the
shape of a so-called admissible A, which are the object of this article. Of course,
a monotone A is trivially admissible, but many interesting types for recursive
functions are not monotone, like A(a) = Nat® — Nat® — Nat® (where Nat®
contains the natural numbers < «). We will show that all types A(«) that are
upper semi-continuous in «, meaning limsup,,_, A(a) C A(\) for limit ordinals
A, are admissible. Function types C(a) = A(«) — B(a) will be admissible if
A is lower semi-continuous (A(A) C liminf,_ A(a)) and B is upper semi-
continuous. Similar laws will be developed for the other type constructors and
put into the form of a kinding system for semi-continuous types.
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Before we dive into the mathematics, let us make sure that semi-continuity is
really necessary for termination. A type which is not upper semi-continuous is
A(2) = (Nat” — Nat') — Nat® (see Sect. 4.2). Assuming we can nevertheless use
this type for a recursive function, we can construct a loop. First, define successor
succ : Vo. Nat® — Nat'™' and predecessor pred : V2. Nat'™ — Nat’. Note that the
size index is an upper bound and w is the biggest such bound for the case of
natural numbers, thus, we have the subtype relations Nat® < Nat*™! < ... <
Nat” < Nat“t! < Nat“.

We make the following definitions:

A(z) := (Nat¥ — Nat") — Nat® foo Y AQ) — A(+1)
f = AloopAg. loop (shift g
shift : Ve (Nat” — Nat*™) ( )
— Nat* — Nat’ loop : Vi. A1)
shift := AgAn. pred (g (succn)) loop := fix f

Since Nat” — Nat” is empty, A passes the bottom check. Still, instantiating
types to succ : Nat” — Nat” and loop : (Nat” — Nat”) — Nat® we convince
ourselves that the execution of loop succ indeed runs forever.

1.1 Related Work and Contribution

Ensuring termination through typing is quite an old idea, just think of type
systems for the A-calculus like simple types, System F, System F“, or the Calculus
of Constructions, which all have the normalization property. These systems have
been extended by special recursion operators, like primitive recursion in Godel’s
T, or the recursors generated for inductive definitions in Type Theory (e.g., in
Coq), that preserve normalization but limit the definition of recursive functions
to special patterns, namely instantiations of the recursion scheme dictated by
the recursion operator. Taming the general recursion operator fix through typing,
however, which allows the definition of recursive functions in the intuitive way
known from functional programming, is not yet fully explored. Mendler [15]
pioneered this field; he used a certain polymorphic typing of the functional f to
obtain primitive (co)recursive functions over arbitrary datatypes. Amadio and
Coupet-Grimal [6] and Giménez [13] developed Mendler’s approach further, until
a presentation using ordinal-indexed (co)inductive types was found and proven
sound by Barthe et al. [7]. The system X~ presented in loc. cit. restricts types
A1) of recursive functions to the shape p'F — C(2) where the domain must
be an inductive type p'F indexed by ¢ and the codomain a type C(z) that is
monotonic in 2. This criterion, which has also been described by the author [2],
allows for a simple soundness proof in the limit case of the transfinite induction,
but excludes interesting types like the considered

Eq (GRose" FFA) = GRose' FA — GRose’ A — Bool

which has an antitonic codomain C(z) = GRose’ FA — Bool. The author has
in previous work widened the criterion, but only for a type system without
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polymorphism [1]. Other recent works on type-based termination [9,10,8] stick
to the restriction of X™. Xi [19] uses dependent types and lexicographic measures
to ensure termination of recursive programs in a call-by-value language, but his
indices are natural numbers instead of ordinals which excludes infinite objects
we are interested in.

Closest to the present work is the sized type system of Hughes, Pareto, and
Sabry [14], Synchronous Haskell [16], which admits ordinal indices up to w. Index
quantifiers as in Vi. A(2) range over natural numbers, but can be instantiated to
w if A(2) is w-undershooting. Sound semantical criteria for w-undershooting types
are already present, but in a rather ad-hoc manner. We cast these criteria in the
established mathematical framework of semi-continuous functions and provide
a syntactical implementation in form of a derivation system. Furthermore, we
also allow ordinals up to the wth uncountable and infinitely branching inductive
types that invalidate some criteria for the only finitely branching tree types
in Synchronous Haskell. Finally, we allow polymorphic recursion, impredicative
polymorphism and higher-kinded inductive and coinductive types such as GRose.
This article summarizes the main results of the author’s dissertation [4].

2 Overview of System F_

In this section we introduce F_, an a posteriori strongly normalizing extension of
System F“ with higher-kinded inductive and coinductive types and (co)recursion
combinators. Figure 1 summarizes the syntactic entities. Function kinds are
equipped with polarities p [18], which are written before the domain or on top
of the arrow. Polarity 4+ denotes covariant constructors, — contravariant con-
structors and o mixed-variant constructors [12]. It is well-known that in order
to obtain a normalizing language, any constructor underlying an inductive type
must be covariant [15], hence, we restrict formation of least fixed-points pF to
covariant F's. (Abel [3] and Matthes [5] provide more explanation on polarities.)

The first argument, a, to pu, which we usually write as superscript, denotes
the upper bound for the height of elements in the inductive type. The index a
is a constructor of kind ord and denotes an ordinal; the canonical inhabitants of
ord are given by the grammar

a=1|sa| oo

with ¢ an ordinal variable. If a actually denotes a finite ordinal (a natural num-
ber), then the height is simply the number of data constructors on the longest
path in the tree structure of any element of y®F'. Since a is only an upper bound,
uF is a subtype of pbF, written pu®F < pbF for a < b, meaning that p is co-
variant in the index argument. Finally, F' < F/ implies u®F < p®F’, so we get
the kinding
+ + +
te cord = (k= K) > K

for the least fixed-point constructor. The kind x is required to be pure, i.e.,
a kind not mentioning ord, for cardinality reasons. Only then it is possible to
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Polarities, kinds, constructors, kinding contexts.

D =+]|—|o polarity

K =% |ord | px — K’ kind

Fox =k | pRa — K pure kind
a,b,A,B,F,G:=C | X |AX:k.F|FG (type) constructor

C u=1]4|X|—=|Ve| e, | Ve | S| 00  constructor constants
A =0 | A X:pk kinding context

Constructor constants and their kinds (k = &’ means px — ).

1 % unit type
+ + « e

+ * =k —> ok disjoint sum
+ .+ :

Xk — ok — % cartesian product
— + .

— ok — ok — function space

* quantification

+ + + . .

Moy Ord = (Ku = Ka) = K inductive constructors
- + + . .

Vi, :ord = (Kx = Ks) = Fx coinductive constructors
+ .

s :ord—ord successor of ordinal

oo :ord infinity ordinal

Objects (terms), values, evaluation frames, typing contexts.

rys,tu=clxz|dxt|rs term

c = () | pair | fst | snd | inl | inr | case | in | out | fix; | fix;,  constant (n € N)
v = Azt | pairtite |inlt | inrt |int | c| pairt | fix,st1.m  value (m < n)
e( )= _s|fst_|snd_|case |out |fixhhstin evaluation frame
E :==Id|Eoe evaluation context
' u=o|Nz:A|X:pk typing context

Reduction t — t'.

(Axt)s  — [s/z]t out (inr) —r

fst(r,s) —r fixty s t1.n (int) — s (fixh; s) t1.n (int)
snd(r,s) —s out (fix}, st1.n) — out (s (fix}, s) t1..n)
case (inlr) — Azdy.xr

case (inrr) — AzAy.yr + closure under all term constructs

Fig. 1. F: Syntax and operational semantics

estimate a single closure ordinal oo at which the fixed-point is reached for all
inductive types. We have

,LLOOF _ ,LLOO+1F7
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where co+1 is a shorthand for soco, s : ord = ord being the successor on ordinals.
If ord was allowed in the kind of a fixed-point, the closure ordinal of this fixed-
point would depend on which ordinals are in the semantics of ord, which in turn
would depend on what the closure ordinal for all fixed-points was—a vicious
cycle. However, I do not see a practical example where one want to construct
the fixed point of a sized-type transformer F : (ord = k) 5 (ord > k). Note
that this does not exclude fixed-points inside fixed-points, such as

BTree"’ A= p'AX. 14+ X x (/AY. 14+ Ax X xY),

“B-trees” of height < ¢ with each node containing < j keys of type A.

Because oo is the closure ordinal, the equation s co = oo makes sense. Equality
on type constructors is defined as the least congruent equivalence relation closed
under this equation and (7.

Ezample 1 (Some sized types).

Nat : ord 5« GRose : ord 5 (x 5 %) 5 % 5 «

Nat =X ' AX. 1+ X GRose := MAFAA. ' AX. 1+ Ax FX
List : ord 5% 5« Tree : ord 5 x 5% 5

List =X MM pPAX. 1+ AXx X  Tree :=XMABMA.GRose" (A X.B — X) A

Stream : ord — % > %
Stream := MAA.V'AX. A x X

The term language of F is the A-calculus plus the standard constants to
introduce and eliminate unit (1), sum (4), and product (x) types. Further,
there is folding, in, and unfolding, out, of (co)inductive types. Let Kk = pk — x*
apure kind, F : +x — Kk, G; : k; for 1 < i < |k|, a : ord, and V € {u, v}, then
we have the following (un)folding rules:

Ir-t:F(VCF)G rkr:VirtlpGg
TY-FOLD Fhint: Ve G TY-UNFOLD [ Foutr: F(VeF)G
Finally, there are fixed-point combinators fix!; and fix;, for each n € N on the term
level. The term fix! s denotes a recursive function with n leading non-recursive
arguments; the n + 1st argument must be of an inductive type. Similarly, fix; s
is a corecursive function which takes n arguments and produces an inhabitant
of a coinductive type.

One-step reduction ¢ — ¢’ is defined by the S-reduction axioms given in
Figure 1 plus congruence rules. Interesting are the reduction rules for recursion
and corecursion:

fixti s t1. . (int) — s (fixki )ty p (int)
out (fix;, st1. n) — out (s (fix;, 8)t1.,)

A recursive function is only unfolded if its recursive argument is a value, i.e.,
of the form int. This condition is required to ensure strong normalization; it is
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present in the work of Mendler [15], Giménez [13]|, Barthe et al. [7], and the
author [2]|. Dually, corecursive functions are only unfolded on demand, i.e., in
an evaluation context, the matching one being out .

As pointed out in the introduction, recursion is introduced by the rule

I'FAfix-adm I +a:ord

TY-REC v .
I Ffix;, : (Va:ord. Av— A(14+ 1)) —» Aa

Herein, V stands for p or v, and the judgement A fixZ—adm makes sure type A is
admissible for (co)recursion, as discussed in the introduction. In the following,
we will find out which types are admissible.

3 Semantics

In this section, we provide an interpretation of types as saturated sets of strongly
normalizing terms. Let & denote the set of strongly normalizing terms. We define
safe (weak head) reduction by these axioms:

(Axt) s > [s/z]t ifseS case (inlr) > ArAy.xT
fst (pairrs) o r ifseS case (inrr) > ATAYy.yr
snd (pairrs) > s ifres fixtis t1..n (in7) > s(fixhs)ty p (inr)
out (inr) > 7 out (fix; st1.n) > out(s(fixys)ti. n)

Additionally, we close safe reduction under evaluation contexts and transitivity:

E(t) > E(t') iftt
t1 > {3 if t1 >ty and to > t3

The relation is defined such that S is closed under >-expansion, meaning ¢t>t' €
S implies t € S. Let %A denote the closure of term set A under [>-expansion. In
general, the closure of term set A is defined as

A="(AU{E(x) | z variable, E(z) € S}).

A term set is closed if A = A. The least closed set is the set of neutral terms
N := () # (). Intuitively, a neutral term never reduces to a value, it necessarily
has a free variable, and it can be substituted into any terms without creating a
new redex. A term set A is saturated if A is closed and N C A C S.

Interpretation of kinds. The saturated sets form a complete lattice [x] with
least element |* := N and greatest element T* := S. It is ordered by inclusion
C* := C and has set-theoretic infimum inf* := () and supremum sup* := |J.
Let [ord] := O where O = [0; T°] is an initial segment of the set-theoretic or-
dinals. With the usual ordering on ordinals, O constitutes a complete lattice as
well. Function kinds [ox — k'] := [r] — [£’] are interpreted as set-theoretic
function spaces; a covariant function kind denotes just the monotonic functions
and a contravariant kind the antitonic ones. For all function kinds, ordering is
defined pointwise: F TP~ F' re= F(G) C* F'(G) for all G € [x]. Simi-
larly, Lp"_”“/(g) := 1" is defined pointwise, and so are TPF—* infp'{ﬁ“l, and
supp"ﬁ’“/.
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Limits and iteration. In the following A € O will denote a limit ordinal. (We will
only consider proper limits, i.e., A # 0.) For £ a complete lattice and f € O — £
we define:

liminf, ) f(a) = sup,, <y infag<acx f(a)

limsup,, 5 £(@0) i= infayor 5D, <nen £(0)

Using inf) f as shorthand for inf,<) f(«), and analogous shorthands for sup,
liminf, and limsup, we have infy f C liminfy f C limsup, f C sup, f. If f is
monotone, then even liminfy f = sup, f, and if f is antitone, then infy f =
lim sup, f.
If fe £ — £and g€ £, we define transfinite iteration f*(g) by recursion on
« as follows:
2 (9)

g
ot (g) = F(f*(9))
f (9) =limsup, ., f*(g)

For monotone f, we obtain the usual approximants of least and greatest fixed-
points as u*f = f*(L) and v*f = f(T).

Closure ordinal. Let 3, be a sequence of cardinals defined by Jy = |N| and
Jnt1 = |P(3,)|. For a pure kind , let |k| be the number of #s in k. Since
[*] consists of countable sets, |[«]| < [P(N)| = 3J;, and by induction on &,
I[]] < 3kj+1. Since an (ascending or descending) chain in [«] is shorter than
[[<]], each fixed point is reached latest at the |[x]|th iteration. Hence, the closure
ordinal for all (co)inductive types can be approximated from above by T°¢ = 1.

Interpretation of types. For r a term, e an evaluation frame, and A a term set,
letr- A= {rs|se A} and e ' A= {r|e(r) € A}. For saturated sets A, B € [#]
we define the following saturated sets:

A+ B :=inl-AUinr-B 1 ={0}
Ax B :=(fst_)""An(snd )~'B A =in- A
A= B:=,ea(_s)'B A” = (out )74

The last two notations are lifted pointwise to operators F € [px — &'] by setting
FY(G) = (F(G)V, where V € {u,v}.
For a constructor constant C': k, the semantics [C] € [«] is defined as follows:

[+](A, B € [+]) =A+ B [1] -1
[<](A, B € [+]) =A x B [o0] .— Tord
[=1(A, B € []) = A= B [s](Tor) .— Tord
[1a](@)(F € [1] & [K]) i= poF" [sl(a < To) :=a+1
[ve](a)(F € [x] 5 []) = voF”

Vel(F €6l = [+ = Ngepe F(9)
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We extend this semantics to constructors F' in the usual way, such that if A
F:kand §(X) € [s] for all (X:pr') € A, then [F], € [x].

Now we can compute the semantics of types, e.g., |[Natl]|(ZHa) = Nat® =
p(X — (1 + X)H). Similarly, the semantical versions of List, Stream, etc. are
denoted by List, Stream, etc.

Semantic admissibility and strong normalization. For the main theorem to fol-
low, we assume semantical soundness of our yet to be defined syntactical criterion
of admissibility: If I' - A fix\-adm and 6(X) € [x] for all (X : &) € [I'] then
A :=[A], € [ord] — [#] has the following properties:

1. Shape: A(a) = (yeg Bi(k,a) — ... — Bp(k,a) — B(k,a) for some
K and some By,...,B,,B € K x [Jord] — [*]. In case V = p, B(k,a) =
I(k,a)* — C(k,a) for some Z,C. Otherwise, B(k, ) = C(k, )" for some C.
Bottom-check: Z(k,0)* = L* in case V = pand C(k,0)” = T* in case V = v.
3. Semi-continuity: limsup,_,, A(a) C A(A) for all limit ordinals A € [ord] \

{0}

Let t0 denote the simultaneous substitution of 8(x) for each x € FV(t) in ¢.

o

Theorem 1 (Type soundness). Let §(X) € [x] for all (X : k) € I' and
0(x) € [A)O for all (x:A) e I'. If I' -1t : B then t0 € [B]6.

Corollary 1 (Strong normalization). If I' - t : B then t is strongly
normalizing.

4 Semi-continuity

As motivated in the introduction, only types C € [ord] — [*] with infyC C
C(X) can be admissible for recursion. Under which conditions on A and B can
a function type A(a) — B(«a) be admissible? It shows that the first choice
infy B C B()) is a requirement too strong: To show inf,<)(A(a) — B(a)) C
A(N) — B()\) we would need A()) C infy A, which is not even true for A = Nat
at limit w. However, each type C with limsup, C C C(A) also fulfills inf, C C C()),
and the modified condition distributes better over function spaces.

Lemma 1. If A()\) C liminfy A and limsup, B C B()) then limsup, (A(a) —
B(a)) E A(X) — B(A).

The conditions on A and B in the lemma are established mathematical terms:
They are subconcepts of continuity. In this article, we consider only functions
f € O — £ from ordinals into some lattice £. For such f, the question whether f
is continuous in point o only makes sense if « is a limit ordinal, because only then
there are infinite non-stationary sequences which converge to a; and since ev-
ery strictly decreasing sequence is finite on ordinals (well-foundedness!), it only
makes sense to look at ascending sequences, i.e., approaching the limit from
the left. Hence, function f is upper semi-continuous in A, if limsup, f C f()\),
and lower semi-continuous, if f(A) C liminfy f. If f is both upper and lower
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semi-continuous in A, then it is continuous in A (then upper and lower limit

coincide with f(A)).

4.1 Positive Results

Basic semi-continuous types. Obviously, any monotone function is upper semi-
continuous, and any antitone function is lower semi-continuous. Now consider a
monotone f with f(\) = sup, f, as it is the case for an inductive type f(a) =
p*F (where F does not depend on «). Since for monotone f, sup, f = liminf) f,
f is lower semi-continuous. This criterion can be used to show upper semi-
continuity of function types such as Eq(GRose® F'A) (see introduction) and, e. g.,

C(a) = Nat™ — List*(A) — C'(«a)

where C’(a) is any monotonic type-valued function, for instance, List®(Nat®),
and A is some constant type: The domain types, Nat® and List®(A), are lower
semi-continuous according the just established criterion and the monotonic co-
domain C’(«) is upper semi-continuous, hence, Lemma 1 proves upper semi-con-
tinuity of C. Note that this criterion fails us if we replace the domain List“(.A)
by List*(Nat®), or even p*(F(Nat®)) for some monotone F, since it is not
immediately obvious that

p® (F(Nat®)) = sup pu®(F(sup Nat?)) < sup w (F(Nat?)).
a<w B<w y<w

However, domain types where one indexed inductive type is inside another in-
ductive type are useful in practice, see Example 3. Before we consider lower
semi-continuity of such types, let us consider the dual case.

For f(a) = v*F, F not dependent on «, f is antitone and f(A) = inf) f. An
antitone f guarantees infy f = limsup, f, so f is upper semi-continuous. This
establishes upper semi-continuity of a type involved in stream-zipping,

Stream®(A) — Stream®(B) — Stream®(C).

The domain types are antitonic, hence lower semi-continuous, and the coinduc-
tive codomain is upper semi-continuous. Upper semi-continuity of Stream®(Nat®)
and similar types is not yet covered, but now we will develop concepts that allow
us to look inside (co)inductive types.

Semi-continuity and (co)induction. Let f € £ — £'. We say limsup pushes
through f, or f is lim sup-pushable, if for all g € O — £, limsup,,_,, f(g(a)) C
f(limsup, g). Analogously, f is liminf-pullable, or liminf can be pulled out of f,
if for all g, f(liminfy g) C liminf,_ ) f(g(«)). These notions extend straightfor-
wardly to fs with several arguments.

Lemma 2 (Facts about limits).

1. limsup,_, f(a, @) E limsupg_,, limsup,,_,, f(5,7)-
2. liminfg_,»liminf, . f(8,7) C liminf,—.» f(o, @).

3. limsup,_,, inf;er f(e, i) C infer limsup,,_,y f(a, ).
4. sup;erliminf, 5 f(a,d) C liminf,_» sup,c; f(a, ).
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Strictly positive contexts: IT ::= ¢ | I, X : +Kx.
Semi-continuity A; [T H'7 F: k for g € {®,S}.

Ajvitord HF:k p€{+,0} Ajvi—ord HF:x pée{—, o}

CONT-CO CONT-C’
Nt Ayv:pord; IT H® F @ i NT-CTRA A,v:pord; IT H© F : K
CONT-IN AFF:k CONT_VAR X:pre A IT p € {+,0}
Ayv:pord; IT F9 F @ g A I 9 X Rk
AT F® F ok — % A X:pr;IT H9F - g
CONT-Y ' CONT-ABS ; ! X
Nt AT O Y F % NT-AB A;IT 9 AXF : pk — K/ 7

CONT-APD Av:plord; IT H9 F 2 pk — K/ p ARGk
Ayv:plord; IT 9 FG . K/
CONT-SUM AT A, B : CONT-PROD AT A, B :
AT 9 A+ B % AT F9 AX B:x
CONT-ARR —A;o F'O A% AT H9 B :x
) AT A — B:x

CONT-MU AL X ke FO F o ks A FC q:ord
AT O p2 AXF : Ky

A I X 4k FOF ks a € {o0,s"| (y:pord) € A with p € {+,0}}

CcoO -
NT=NU AT F® y2 AXF : g,

Fig. 2. F: Semi-continuous constructors

Fact 3 states that limsup pushes through infimum and, thus, justifies rule
CONT-Y in Fig. 2 (see Sect. 5). The dual fact 4 expresses that liminf can be
pulled out of a supremum.

Lemma 3. Binary sums + and products X and the operations (—)* and (—)¥
are lim sup-pushable and lim inf-pullable.

Using monotonicity of the product constructor, the lemma entails that A(a) X
B(«) is upper/lower semi-continuous if A(«) and B(«) are. This applies also for
+.

A generalization of Lemma 1 is:

Lemma 4 (limsup through function space).
limsup,_,, (A(a) — B(a)) C (liminfy A) — limsup, B.

Now, to (co)inductive types. Let ¢ € O — O.

Lemma 5. p'™x@ — liminf,_,\ p®® and lim SUDg— pe) = pliminfy ¢
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Lemma 6. For o € O, let F, € £ 2 be lim inf-pullable and G, € £ gy
be lim sup-pushable. Then for all 3 € O, p?(liminfy F) C liminf, . u®F, and
limsup,, ., v°G, C v?(limsup, G).

Proof. By transfinite induction on 3.

Corollary 2 (Limits and (co)inductive types).

1. pim it @ liminfy F C liminf,\ p® @ F,,
2. limsup,,_,, v @G, C '™ limsup, G.

Proof. For instance, the second inclusion can be derived in three steps using
Lemma 2.1, Lemma 5, and Lemma 6.

Now, since Go(X) = (Mat® x X)” is lim sup-pushable, we have can infer up-
per semi-continuity of Stream®(Nat®) = v*G,. Analogously, we establish lower
semi-continuity of List®(Nat®).

4.2 Negative Results

Function space and lower semi-continuity. One may wonder whether Lemma 1
can be dualized, i. e., does upper semi-continuity of A and lower semi-continuity
of B entail lower semi-continuity of C(a) = A(a) — B(«)? The answer is no,
e.g., consider C(a) = Nat¥ — Nat®. Although A(a) = Nat¥ is trivially up-
per semi-continuous, and B(a) = Nat® is lower semi-continuous, C is not lower
semi-continuous: For instance, the identity function is in C(w) but in no C(«)
for @ < w, hence, also not in liminf,, C. And indeed, if this C was lower semi-
continuous, then our criterion would be unsound, because then by Lemma 1 the
type (Mat* — Nat®*) — Nat¥, which admits a looping function (see introduc-
tion), would be upper semi-continuous.

Inductive types and upper semi-continuity. Pareto [16] proves that inductive
types are (in our terminology) lim sup-pushable. His inductive types denote
only finitely branching trees, but we also consider infinite branching, arising
from function space embedded in inductive types. In my thesis [4, Sect. 5.4.3] I
show that infinitely branching inductive data types do not inherit upper semi-
continuity from their defining body. But remember that inductive types can still
be upper semi-continuous if they are covariant in their size index.

5 A Kinding System for Semi-continuity

We turn the results of the last section into a calculus and define a judgement
Ay IT F F @ K, where 1 is an ordinal variable (¢:pord) € A, the bit ¢ € {©, ®}
states whether the constructor F' under consideration is lower (&) or upper (6)
semi-continuous, and II is a context of strictly positive constructor variables
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X :++k’. The complete listing of rules can be found in Figure 2; in the following,
we discuss a few.

CONT-CO Ajv:itord HF ik p € {+,0}
A v:pord; IT H® F: g

If 2 appears positively in F', then F is trivially upper semi-continuous. In the con-
clusion we may choose to set p = o, meaning that we forget that F' is monotone
in 2.
—Ajo FO Ak A I @ B
CONT-ARR AT F® A— B x
This rule incarnates Lemma 1. Note that, because A is to the left of the arrow,

the polarity of all ordinary variables in A is reversed, and A may not contain
strictly positive variables.

CONTNU A I X iRy FOF gy
A IT B0 padX ik, F 2 kg

Rule CONT-NU states that strictly positive coinductive types are upper semi-
continuous. The ordinal @ must be co or s™j for some j:ord € A (which may also
be identical to 1).

Theorem 2 (Soundness of Continuity Derivations). Let 6 a valuation of
the variables in A and IT, (X :++') € II, G € [ord] — [+'], and X € [ord] a limit
ordinal.

1. If Ay IT F'© F : k then

(a) [F ]I(,[lHA C liminf,x[F], O[a)s OND

() [Floixtiminty g E iminfa—x[Flox.g(ay-
2. If A;IT =0 F : i then

(a) limsupa_,kﬂF]lg[l,_,a] C |[F]|9[z»—»/\]’ and

(b) limsupa‘}/\ﬂF]lg[XHg ()] = C[F ]I&[X»—dimsup/\ gl

Proof. By induction on the derivation [4, Sect. 5.5]. The soundness of CONT-NU
hinges on the fact that strictly positive coinductive types close at ordinal w.

Now we are able to formulate the syntactical admissibility criterion for types of
(co)recursive functions.

I'+(VX:k.By— -+ — B, = u'FH — C) fix-adm
iff I'2:oord, X:k;0 F® By ,, — p*'FH — C : %

I't(\.VX:k.By — - — B, —»V'"FH) fix;-adm
iff I'i:oord, X:k;0 F'® By , — v'FH : %

It is easy to check that admissible types fulfill the semantic criteria given at the
end of Section 3.
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Ezample 2 (Inductive type inside coinductive type). Rule CONT-NU allows the
type system to accept the following definition, which assigns an informative
type to the stream nats of all natural numbers in ascending order:

mapStream : VAVB.(A — B) — Vi.Stream"A — Stream'B

nats : V. Stream’ Nat’
nats := fixg Anats. (zero, mapStream succ nats)

Ezample 8 (Inductive type inside inductive type). In the following, we describe
breadth-first traversal of rose (finitely branching) trees whose termination is
recognized by F.

Rose: ord & % & x

Rose := MAA. GRose® List™ A = MAA. puiAX. A x List™ X

The step function, defined by induction on j, traverses a list of rose trees of
height < 2+ 1 and produces a list of the roots and a list of the branches (height
<1).

step: VyVAVa. List’(Rose™" A) — List’ A x List>(Rose' A)

step := fix}) Astep Al. match [ with
nil — (nil, nil
cons {a, rs’) rs — match step rs with
(as, rs") — {(cons a as, appendrs’ rs")

Now, bf iterates step on a non-empty forest. It is defined by induction on .

bf :  ViVA.Rose" A — List™(Rose” A) — List™ A
bf := fix; Abf A\rArs. match step (cons r rs) with
(as, nil) — as
(as, cons 1’ rs’y — append as (bf r' rs’)

Function bf terminates because the recursive-call trees in forest consr’ rs are
smaller than the input trees in forest consr rs. This information is available
to the type system through the type of step. The type of bf is admissible for
recursion since List™ (Rose’ A) is lower semi-continuous in +—thanks to Cor. 2
and rule CONT-MU.

6 Conclusions

We have motivated the importance of semi-continuity for the soundness of type-
based termination checking, explored the realm of semi-continuous functions
from ordinals to semantical types, and developed a calculus for semi-continuous
types. We have seen a few interesting examples involving semi-continuous types,
many more can be found in the author’s thesis [4, Ch. 6]. These examples cannot
be handled by type-based termination & la Barthe et al. [7,8], but our develop-
ments could be directly incorporated into their calculus.
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In previous work [1], I have already presented a calculus for admissible recur-
sion types. But the language had neither polymorphism, higher-kinded types,
nor semi-continuous types inside each other (Stream® Nat’). Hughes, Pareto, and
Sabry [14] have also given criteria for admissible types similar to ours, but rather
ad-hoc ones, not based on the mathematical concept of semi-continuity. Also, a
crucial difference is that we also treat infinitely branching data structures. To
be fair, I should say that their work has been a major source of inspiration for
me.

As a further direction of research, I propose to develop a kinding system
where semi-continuity is first class, i.e., one can abstract over semi-continuous
constructors, and kind arrows can carry the corresponding polarities © or @.
First attempts suggest that such a calculus is not straightforward, and more
fine-grained polarity system will be necessary.

Acknowledgments. 1 would like to thank my supervisor, Martin Hofmann, for
discussions on Fj. Thanks to John Hughes for lending his ear in difficult phases
of this work, for instance, when I was trying to prove upper semi-continuity of
inductive types but then found a counterexample. Thanks to the anonymous
referees of previous versions of this paper who gave insightful and helpful com-
ments.
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Abstract. We investigate the possibility of (bi)simulation-like pre-
order/equivalence checking on the class of visibly pushdown automata
and its natural subclasses visibly BPA (Basic Process Algebra) and
visibly one-counter automata. We describe generic methods for prov-
ing complexity upper and lower bounds for a number of studied pre-
orders and equivalences like simulation, completed simulation, ready
simulation, 2-nested simulation preorders/equivalences and bisimulation
equivalence. Our main results are that all the mentioned equivalences
and preorders are EXPTIME-complete on visibly pushdown automata,
PSPACE-complete on visibly one-counter automata and P-complete on
visibly BPA. Our PSPACE lower bound for visibly one-counter automata
improves also the previously known DP-hardness results for ordinary
one-counter automata and one-counter nets. Finally, we study regularity
checking problems for visibly pushdown automata and show that they
can be decided in polynomial time.

1 Introduction

Visibly pushdown languages were introduced by Alur and Madhusudan in [4]
as a subclass of context-free languages suitable for formal program analysis, yet
tractable and with nice closure properties like the class of regular languages.
Visibly pushdown languages are accepted by visibly pushdown automata whose
stack behaviour is determined by the input symbol. If the symbol belongs to the
category of call actions then the automaton must push, if it belongs to return
actions then the automaton must pop, otherwise (for the internal actions) it
cannot change the stack height. In [4] it is shown that the class of visibly push-
down languages is closed under intersection, union, complementation, renaming,
concatenation and Kleene star. A number of decision problems like universality,
language equivalence and language inclusion, which are undecidable for context-
free languages, become EXPTIME-complete for visibly pushdown languages.
Recently, visibly pushdown languages have been intensively studied and ap-
plied to e.g. program analysis [2], XML processing [20] and the language theory
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dation.
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of this class has been further investigated in [3,6]. Some recent results show for
example the application of a variant of vPDA for proving decidability of contex-
tual equivalence (and other problems) for the third-order fragment of Idealized
Algol [18].

In this paper we study visibly pushdown automata from a different perspec-
tive. Rather than as language acceptors, we consider visibly pushdown automata
as devices that generate infinite-state labelled graphs and we study the questions
of decidability of behavioral equivalences and preorders on this class. Our results
confirm the tractability of a number of verification problems for visibly pushdown
automata.

We prove EXPTIME-completeness of equivalence checking on visibly push-
down automata (vPDA) for practically all preorders and equivalences between
simulation preorder and bisimulation equivalence that have been studied in the
literature (our focus includes simulation, completed simulation, ready simula-
tion, 2-nested simulation and bisimulation). We then study two natural (and
incomparable) subclasses of visibly pushdown automata: visibly basic process
algebra (vBPA) and visibly one-counter automata (v1CA). In case of vICA we
demonstrate PSPACE-completeness of the preorder/equivalence checking prob-
lems and in case of vBPA even P-completeness. For vBPA we provide also a
direct reduction of the studied problems to equivalence checking on finite-state
systems, hence the fast algorithms already developed for systems with finitely
many reachable states can be directly used. All the mentioned upper bounds are
matched by the corresponding lower bounds. The PSPACE-hardness proof for
v1CA moreover improves the currently known DP lower bounds [13] for equiv-
alence checking problems on ordinary one-counter automata and one-counter
nets and some other problems (see Remark 2). Finally, we consider regularity
checking for visibly pushdown automata and show P-completeness for vPDA
and vBPA, and NL-completeness for viCA w.r.t. all equivalences between trace
equivalence and isomorphism of labelled transition systems.

Related work. The main reason why many problems for visibly pushdown lan-
guages become tractable is, as observed in [4], that a pair of visibly pushdown
automata can be synchronized in a similar fashion as finite automata. We use
this idea to construct, for a given pair of vPDA processes, a single pushdown
automaton where we in a particular way encode the behaviour of both input
processes so that they can alternate in performing their moves. This is done in
such a way that the question of equality of the input processes w.r.t. a given
preorder/equivalence can be tested by asking about the validity of particular
(and fixed) modal p-calculus formulae on the single pushdown process. A simi-
lar result of reducing weak simulation between a pushdown process and a finite-
state process (and vice versa) to the model checking problem appeared in [17].
We generalize these ideas to cover preorders/equivalences between two visibly
pushdown processes and provide a generic proof for all the equivalence checking
problems. The technical details of our construction are different from [17] and in
particular our construction works immediately also for vBPA (as the necessary
bookkeeping is stored in the stack alphabet). As a result we thus show how to
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handle essentially any so far studied equivalence/preorder between simulation
and bisimulation in a uniform way for vPDA, vBPA as well as for v1CA.

In [6] the authors study language regularity problems for visibly pushdown
automata. Their line of research is orthogonal to ours because they define a
visibly pushdown automaton as regular if it is language equivalent to some visibly
one-counter automaton. We study the regularity problems in the context of
the standard definitions from the concurrency theory, i.e., whether for a given
vPDA process there is a behaviorally equivalent finite-state system. Though, as
remarked in more detail in the conclusion, questions of finding an equivalent
v1CA and in particular vBPA for a given vPDA could be also interesting to
investigate.

Note: full version of this paper will appear as BRICS technical report.

2 Definitions

A labelled transition system (LTS) is a triple (S, Act, —) where S is the set of
states (or processes), Act is the set of labels (or actions), and —C S x Act x S
is the transition relation; for each a € Act, we view —— as a binary relation on
S where s % s iff (s,a,s’) €—. The notation can be naturally extended to
s — s for finite sequences of actions w € Act*. For a process s € S we define
the set of its initial actions by I(s) def {acAct|3s' € S. s = 5},

We shall now define the studied equivalences/preorders which are between
simulation and bisimilarity. Given an LTS (S, .Act,—), a binary relation R C

S xSisa

— simulation iff for each (s,t) € R, a € Act, and s’ such that s — s there is
t' such that t —%» ¢ and (s',t') € R,

— completed simulation iff R is a simulation and moreover for each (s,t) € R
it holds that I(s) = 0 if and only if I(¢) = 0,

— ready simulation iff R is a simulation and moreover for each (s,t) € R it
holds that I(s) = I(t),

— 2-nested simulation iff R is a simulation and moreover R~! C R, and

bisimulation iff R is a simulation and moreover R~! = R.

We write s Cg ¢ if there is a simulation R such that (s,t) € R, s T, ¢ if
there is a completed simulation R such that (s,t) € R, s C, t if there is a ready
simulation R such that (s,t) € R, s Ca, ¢t if there is a 2-nested simulation R
such that (s,t) € R, s ~ t if there is a bisimulation R such that (s,¢) € R. The
relations are called the corresponding preorders (except for bisimilarity, which is
already an equivalence). For a preorder C € {C;, C.s, C,s, Cog} we define the
corresponding equivalence by s =t iff s C t and ¢t C s. We remind the reader of
the fact that ~ CLhos CLys CLes €L and ~ C =25 C =45 C=¢s € =5 and
all inclusions are strict.

We shall use a standard game-theoretic characterization of (bi)similarity. A
bisimulation game on a pair of processes (s1,¢1) is a two-player game between
Attacker and Defender. The game is played in rounds on pairs of states from
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S x S. In each round the players change the current pair of states (s,t) (initially
s =81 and t = t1) according to the following rule:

1. Attacker chooses either s or t, a € Act and performs a move s — s’
ort st/

2. Defender responds by choosing the opposite process (either ¢ or s)
and performs a move t — t' or s — s’ under the same action a.

3. The pair (s',t') becomes the (new) current pair of states.

A play (of the bisimulation game) is a sequence of pairs of processes formed by
the players according to the rules mentioned above. A play is finite iff one of the
players gets stuck (cannot make a move); the player who got stuck lost the play
and the other player is the winner. If the play is infinite then Defender is the
winner.

We use the following standard fact.

Proposition 1. It holds that s ~ t iff Defender has a winning strategy in the
bisimulation game starting with the pair (s,t), and s & t iff Attacker has a
winning strategy in the corresponding game.

The rules of the bisimulation game can be easily modified in order to capture
the other equivalences/preorders.

In the simulation preorder game, Attacker is restricted to attack only from
the (left-hand side) process s. In the simulation equivalence game, Attacker can
first choose a side (either s or ¢) but after that he is not allowed to change
the side any more. Completed/ready simulation game has the same rules as the
simulation game but Defender is moreover losing in any configuration which
brakes the extra condition imposed by the definition (i.e. s and ¢ should have
the same set of initial actions in case of ready simulation, and their sets of initial
actions should be both empty at the same time in case of completed simulation).
Finally, in the 2-nested simulation preorder game, Attacker starts playing from
the left-hand side process s and at most once during the play he is allowed to
switch sides (the soundness follows from the characterization provided in [1]). In
the 2-nested simulation equivalence game, Attacker can initially choose any side
but he is still restricted that he can change sides at most once during the play.

We shall now define the model of pushdown automata. Let Act be a finite
set of actions, let I" be a finite set of stack symbols and let @) be a finite set of
control states. We assume that the sets Act, I and @ are pairwise disjoint. A
pushdown automaton (PDA) over the set of actions Act, stack alphabet I" and
control states @ is a finite set A of rules of the form pX —— qa where p,q € Q,
a€c€ Act, X € I'and o € IT™.

A PDA A determines a labelled transition system T'(A) = (5, Act, —) where
the states are configurations of the form statexstack (i.e. S = @ x I'* and
configurations like (p,«) are usually written as pa where the top of the stack
« is by agreement on the left) and the transition relation is determined by the
following prefix rewriting rule.
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(pX L qa)e A, yerI*
pXy - qay

A pushdown automaton is called BPA for Basic Process Algebra if the set
of control states is a singleton set (|Q| = 1). In this case we usually omit the
control state from the rules and configurations.

A pushdown automaton is called 1CA for one-counter automaton if the stack
alphabet consists of two symbols only, I' = {I, Z}, and every rule is of the form
pl - qoor pZ % qaZ, where o € {I'}*. This means that every configuration
reachable from pZ is of the form pI™Z where I"™ stands for a sequence of n
symbols I and Z corresponds to the bottom of the stack (the value zero). We
shall simply denote such a configuration by p(n) and say that it represents the
counter value n.

Assume that Act = Act. U Act, U Act; is partitioned into a disjoint union of
finite sets of call, return and internal actions, respectively. A wvisibly pushdown
automaton (VPDA) is a PDA which, for every rule pX —% qa, satisfies additional
three requirements (where |a| stands for the length of «):

— if a € Act, then |a| = 2 (call),
— if a € Act, then |a| = 0 (return), and
— if a € Act; then |a] =1 (internal).

Hence in vPDA the type of the input action determines the change in the height
of the stack (call by +1, return by —1, internal by 0).

The classes of visibly basic process algebra (vBPA) and visibly one-counter
automata (v1CA) are defined analogously.

Remark 1. For internal actions we allow to modify also the top of the stack.
This model (for vPDA) can be easily seen to be equivalent to the standard
one (as introduced in [4]) where the top of the stack does not change under
internal actions. However, when we consider the subclass vBPA, the possibility
of changing the top of the stack under internal actions significantly increases the
descriptive power of the formalism. Unlike in [4], we do not allow to perform
return actions on the empty stack.

The question we are interested in is: given a vPDA (or vBPA, or v1CA) and two
of its initial configurations pX and ¢Y’, can we algorithmically decide whether
pX and ¢Y are equal with respect to a given preorder/equivalence and if yes,
what is the complexity?

3 Decidability of Preorder/Equivalence Checking

3.1 Visibly Pushdown Automata

We shall now study preorder/equivalence checking problems on the class of vis-
ibly pushdown automata. We prove the decidability by reducing the problems
to model checking of an ordinary pushdown system against a fixed p-calculus
formula.
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Let A be a vPDA over the set of actions Act = Act. U Act, U Act;, stack
alphabet I" and control states Q. We shall construct a PDA A’ over the actions

Act’ € ActUActU{0,r} where Act “ {a | a € Act}, stack alphabet I & Gx G

where G < I'U (I' x I') U (I" x Act) U{e}, and control states Q' = L'0Q x Q. For
notational convenience, elements (X, a) € I x Act will be written simply as X,.

The idea is that for a given pair of vPDA processes we shall construct a
single PDA process which simulates the behaviour of both vPDA processes by
repeatedly performing a move in one of the processes, immediately followed by
a move under the same action in the other process. The actions £ and r make it
visible, whether the move is performed on the left-hand side or right-hand side.
The assumption that the given processes are vPDA ensures that their stacks are
kept synchronized.

We shall define a partial mapping [ ., .]: I'™* x I'* — (I" x I')* inductively as
follows (X,Y € I and a, 8 € I'* such that |o] = |8]): [Xa, V8] %< (X,Y)[a, 4]

and [e, €] df ¢ The mapping provides the possibility to merge stacks.

Assume a given pair of vPDA processes pX and ¢Y . Our aim is to effectively
construct a new PDA system A’ such that for every > € {C;, =5, Ces, =cs, Cps,
=rs, Cas, =25, ~} it is the case that pX 1 ¢Y in A if and only if (p,¢)(X,Y) =
¢ in A’ for a fixed p-calculus formula ¢pq. We refer the reader to [16] for the
introduction to the modal pu-calculus.

The set of PDA rules A’ is defined as follows. Whenever (pX —% ga) € A
then the following rules belong to A':

1. (p,p")(X,X") AN (¢,p)(a, X!) for every p’ € Q and X' € I’

2. (p/,p) (X', X) = (¢, q) (X, ) for every p’ € Q and X' € I,

3. (0,p)(B, Xa) — (1, q)[B, ] for every p’ € Q and € I' U(I" x I') U {e},
4. (p,p")(Xa, B) L( q,p ’)[a,ﬁ] for every p’ € Q and S € T'U(I" x I') U {e},
5. (0, )X, X") % (p,p')(X, X') for every p’ € Q and X' € T, and

6. (p’,p)(X’,X)L(p,p)(X X) for every p' € Q and X' € I'.

From a configuration (p, ¢)[a, (] the rules of the form 1. and 2. select either the
left-hand or right-hand side and perform some transition in the selected process.
The next possible transition (by rules 3. and 4.) is only from the opposite side
of the configuration than in the previous step. Symbols of the form X, where
X € I' and a € Act are used to make sure that the transitions in these two steps
are due to pushdown rules under the same label a. Note that in the rules 3. and
4. it is thus guaranteed that |« = |G]. Finally, the rules 5. and 6. introduce a
number of self-loops in order to make visible the initial actions of the processes.

Lemma 1. Let A be a vPDA system over the set of actions Act and pX, qY
two of its processes. Let (p,q)(X,Y) be a process in the system A’ constructed
above. Let

— ¢
- (b:s

vZ.[(r)Z,
¢c. N (WZ[r]{0)Z),
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|
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=vZ.([()(r)Z A ({(Act)tt < (Act)tt)),
— P—e = e ANVZ ([P0 Z A ((Act)tt < (Act)tt)),
— ¢, =vZ.([nNZ A N ()t = (a)tt)),

acAct
e =00 VZ T A (@t @),
= Oca. =vZ.([)(r)Z N (vZ'[r](0)2")),
= = = Po AVZ([TOZ A (vZ' [()(r)2")), and
— o =vZ.J0 (1) 7.

For every X € {Esa =5 Ecw —cs» Erm —rs; E257 —2s5 N} it holds that pX e qY Zf
and only if (p,¢)(X,Y) F ¢ua-

Theorem 1. Simulation, completed simulation, ready simulation and 2-nested
stmulation preorders and equivalences, as well as bisimulation equivalence are
decidable on vPDA and all these problems are EXPTIME-complete.

Proof. EXPTIME-hardness (for all relations between simulation preorder and
bisimulation equivalence) follows from [17] as the pushdown automaton con-
structed in the proof is in fact a vPDA.

For the containment in EXPTIME observe that all our equivalence check-
ing problems are reduced in polynomial time to model checking of a pushdown
automaton against a fixed size formula of modal p-calculus. The complexity of
the model checking problem for a pushdown automaton with m states and k
stack symbols and a formula of the size n; and of the alternation depth ns is
O((k2¢mmn2)n2)) for some constant ¢ [25]. In our case for a given vPDA system
with m states and k stack symbols we construct a PDA system with m? states
and with O(k® - | Act|) stack symbols (used in the transition rules). Hence the
overall time complexity of checkmg whether two vPDA processes pX and ¢Y
are equivalent is (k3 - [Act|)200m"). O

3.2 Visibly Basic Process Algebra

We shall now focus on the complexity of preorder/equivalence checking for vBPA,
a strict subclass of vPDA.

Theorem 2. Simulation, completed simulation, ready simulation and 2-nested
simulation preorders and equivalences, as well as bisimulation equivalence are
P-complete on vBPA.

Proof. Recall that a vBPA process is a vPDA processes with a single control
state. By using the arguments from the proof of Theorem 1, the complexity of
equivalence checking on vBPA is therefore O(k?-|Act|) where k is the cardinality
of the stack alphabet (and where m = 1). P-hardness was proved in [21] even
for finite-state systems. O

In fact, for vBPA we can introduce even better complexity upper bounds by
reducing it to preorder/equivalence checking on finite-state systems.
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a X > €
X —Y A A
XLe L . a b
XTC>XY 5
Y —e¢ (X,Y) 2 Sy

Fig. 1. Transformation of a vBPA into a finite-state system

Theorem 3. Simulation, completed simulation, ready simulation and 2-nested
simulation preorders and equivalences, as well as bisimulation equivalence on
vBPA is reducible to checking the same preorder/equivalence on finite-state sys-
tems. For any vBPA process A (with the natural requirement that every stack
symbol appears at least in one rule from A), the reduction is computable in time
O(|A|) and outputs a finite-state system with O(|A|) states and O(|4A|) transi-
tions.

Proof. Let Act = Act. U Act, U Act; be the set of actions and let I' be the

stack alphabet of a given vBPA system A (we shall omit writing the control

states as this is a singleton set). Let S of {(V,Z)eI'xT'|3I(X Y2 €

A for some X € I' and a € Act,. }. We construct a finite-state transition system
T = (I'U{e}US, ActU{1,2},=) for fresh actions 1 and 2 as follows. For every
vBPA rule (X % ) € A, we add the transitions:

— X =% cifa € Act, (and a = ¢),

- X=25YifacActand a =Y,

X =% (Y,2)ifa € Act. and a =Y Z,

- (Y'7Z):1>Yifa€.ActC and a =Y Z, and

- (Y, 2) =2 Zifa € Act. and o = Y Z such that Y —" .

Note that the set {Y € I' | Y —" ¢} can be (by standard techniques)
computed in time O(|A[). Moreover, the finite-state system T" has O(|A|) states
and O(]A4]) transitions. See Figure 1 for an example of the transformation.

Let us now observe that in vBPA systems we have the following decomposition
property. It is the case that Xa ~ X’a’ in A (where X, X’ € I" and a,a’ € ')
if and only if in A the following two conditions hold: (i) X ~ X’ and (ii) if
(X —" eor X’ —" ¢€) then a ~ o. Hence for any X,Y € I' we have that
X ~Yin Aiff X ~Y in T. It is easy to check that the fact above holds also
for any other preorder/equivalence as stated by the theorem. ad

This means that for preorder/equivalence checking on vBPA we can use the
efficient algorithms already developed for finite-state systems. For example, for
finite-state transition systems with k states and ¢ transitions, bisimilarity can
be decided in time O(tlogk) [19]. Hence bisimilarity on a vBPA system A is
decidable in time O(|4] -log|A4]).
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3.3 Visibly One-Counter Automata

We will now continue with studying preorder/equivalence checking problems on
v1CA, a strict subclass of vPDA and an incomparable class with vBPA (w.r.t.
bisimilarity). We start by showing PSPACE-hardness of the problems. The proof
is by reduction from a PSPACE-complete problem of emptiness of one-way al-
ternating finite automata over one-letter alphabet [11].

A one-way alternating finite automaton over one-letter alphabet is a 5-tuple
A =(Q3,Qv, q,0, F) where Q3 and Qv are finite and disjoint sets of existential,
resp. universal control states, gy € Q3 U Qv is the initial state, ' C Q3 U Qv is
the set of final states and § : Q3 U Qy — 2939V is the transition function.

A computational tree for an input word of the form I"™ (where n is a natural
number and I is the only letter in the input alphabet) is a tree where every
branch has exactly n+ 1 nodes labelled by control states from Q3 U Qv such that
the root is labelled with gg and every non-leaf node that is already labelled by
some g € Q3 U Qv such that 6(¢) = {q1,...,qr} has either

— one child labelled by ¢; for some i, 1 <7 <k, if ¢ € Q3, or
— k children labelled by q1, ..., qx, if ¢ € Qv.

A computational tree is accepting if the labels of all its leaves are fi-

nal (i.e. belong to F). The language of A is defined by L(A) def {I" |
I has some accepting computational tree }.

The emptiness problem for one-way alternating finite automata over one-
letter alphabet (denoted as EMPTY) is to decide whether L(A) = @) for a given
automaton A. The problem EMPTY is known to be PSPACE-complete due to
Holzer [11].

In what follows we shall demonstrate a polynomial time reduction from
EMPTY to equivalence/preorder checking on visibly one-counter automata. We
shall moreover show the reduction for any (arbitrary) relation between simu-
lation preorder and bisimulation equivalence. This in particular covers all pre-
orders/equivalences introduced in this paper.

Lemma 2. All relations between simulation preorder and bisimulation equiva-
lence are PSPACE-hard on viCA.

Proof. Let A = (Q3,Qv, qo, 9, F) be a given instance of EMPTY. We shall con-

struct a visibly one-counter automaton A over the set of actions Act. def {i},

Act, def {dg | ¢ € Q3 U Qv}, Act; def {a,e} and with control states @ def

{p.0',t} U{q, ¢ tq | ¢ € Q3 U Qv} such that

— if L(A) = 0 then Defender has a winning strategy from pZ and p'Z in the
bisimulation game (i.e. pZ ~ p’'Z), and

— if L(A) # 0 then Attacker has a winning strategy from pZ and p’Z in the
simulation preorder game (i.e. pZ s p'Z).

The intuition is that Attacker generates some counter value n in both of the
processes pZ and p’Z and then switches into a checking phase by changing
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the configurations to go(n) and ¢((n). Now the players decrease the counter
and change the control states according to the function §. Attacker selects the
successor in any existential configuration, while Defender makes the choice of
the successor in every universal configuration. Attacker wins if the players reach
a pair of configurations ¢(0) and ¢’(0) where g € F.

We shall now define the set of rules A. The initial rules allow Attacker (by
performing repeatedly the action 4) to set the counter into an arbitrary number,
i.e., Attacker generates a candidate word from L(A).

pZ — plZ VZ - p'1Z

pl — pII p'I = p'IT
pZ - qZ PVZ 5 qZ
pI - qol P = qol

Observe that Attacker is at some point forced to perform the action a (an infinite
play is winning for Defender) and switch to the checking phase starting from
a0(n) and gh(n).

Now for every existential state ¢ € Q3 with 6(q) = {q1,...,qr} and for every
i€{l,...,k} we add the following rules.

dq: dg:
ol =Sq 1=

This means that Attacker can decide on the successor ¢; of ¢ and the players in
one round move from the pair ¢(n) and ¢'(n) into ¢;(n — 1) and ¢}(n — 1).

Next for every universal state ¢ € Qv with 6(¢) = {q1,...,qx} and for every
i€{l,...,k} we add the rules

ql 5 tI qT -ty 1
ql =%t 1

and for every ¢, € Q3 U Qv such that ¢ # r we add

d d,
tl % ¢ tod =5 ¢
thLr .

These rules are more complex and they correspond to a particular imple-
mentation of so called Defender’s Choice Technique (for further examples see
e.g. [15]). We shall explain the idea by using Figure 2. Assume that ¢ € Qv and
0(¢) = {q1,---,q:}. In the first round of the bisimulation game starting from
q(n) and ¢'(n) where n > 0, Attacker is forced to take the move g(n) —— t(n).
On any other move Defender answers by immediately reaching a pair of syntacti-
cally equal processes (and thus wins the game). Defender’s answer on Attacker’s
move g(n) — t(n) is to perform ¢'(n) - t,(n) for some i € {1,...,k}. The
second round thus starts from the pair ¢(n) and ¢4 (n). Should Attacker choose
to play the action d,. for some state r such that r # ¢; (on either side), Defender
can again reach a syntactic equality and wins. Hence Attacker is forced to play
the action dg; on which Defender answers by the same action in the opposite
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g (n)

gi(n—1) r(n—1) gi(n—1)

Fig. 2. Defender’s Choice: ¢ € Qv and 6(q) = {q1,-.-,qr}

process and the players reach the pair ¢;(n — 1) and ¢;(n — 1). Note that it was
Defender who selected the new control state g;.
Finally, for every ¢ € F' we add the rule

9z = qZ .

It is easy to see that A is a visibly one-counter automaton. Moreover, if
L(A) =0 then pZ ~ p'Z, and if L(A) # 0 then pZ L, p'Z. O

Remark 2. The reduction above works also for a strict subclass of one-counter
automata called one-counter nets (where it is not allowed to test for zero, see
e.g. [13]). It is enough to replace the final rule ¢Z -2 ¢Z with two new rules
¢ = q and ¢'I = ¢I for every q € F. Moreover, a slight modification of
the system allows to show PSPACE-hardness of simulation preorder checking
between one-counter automata and finite-state systems and vice versa. Hence
the previously know DP lower bounds [13] for all relations between simulation
preorder and bisimulation equivalence on one-counter nets (and one-counter
automata) as well as of simulation preorder/equivalence between one-counter
automata and finite-state systems, and between finite-state systems and one-
counter automata are raised to PSPACE-hardness.

We are now ready to state the precise complexity of (bi)simulation-like pre-
orders/equivalences on visibly one-counter automata.

Theorem 4. Simulation, completed simulation, ready simulation and 2-nested
stmulation preorders and equivalences, as well as bisimulation equivalence are
PSPACE-complete on vi1CA.

Proof. PSPACE-hardness follows from Lemma 2. Containment in PSPACE is
due to Lemma 1 and due to [23] where it was very recently showed that model
checking modal p-calculus on one-counter automata is decidable in PSPACE.
The only slight complication is that the system used in Lemma 1 is not nec-
essarily a one-counter automaton. All stack symbols are of the form (I,I) or
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(Z, Z) which is fine, except for the very top of the stack where more stack sym-
bols are used. Nevertheless, by standard techniques, the top of the stack can be
remembered in the control states in order to apply the result from [23]. ]

4 Decidability of Regularity Checking

In this section we ask the question whether a given vPDA process is equivalent
to some finite-state system. Should this be the case, we call the given process
reqular (w.r.t. the considered equivalence). The main result of this section is
a semantical characterization of regular vPDA processes via the property of
unbounded popping and a polynomial time decision algorithm to test whether
a given process satisfies this property.

Let Act = Act.UAct,-U . Act; be the set of actions of a given vPDA. We define
a function h : Act — {—1,0,+1} by h(a) = +1 for all a € Acte, h(a) = —1 for
all @ € Act,, and h(a) = 0 for all a € Act;. The function h can be naturally
extended to sequences of actions by h(ai...an) = > ;e ) h(ai). Observe

now that for any computation po — g3 we have || = |a| + h(w).

Definition 1. Let pX be a vPDA configuration. We say that pX provides un-
bounded popping if for every natural number d there is a configuration g3 and
a word w € Act* such that h(w) < —d and pX —* ¢ = .

Lemma 3. Let pX be a vPDA configuration which provides unbounded popping.
Then pX is not reqular w.r.t. trace equivalence.

Proof (Sketch). By contradiction. Let pX be trace equivalent to some finite-state
system A with n states. Let us consider a trace wiws such that pX —% ¢f —
for some ¢ and h(wy) < —n. Such a trace must exist because pX provides
unbounded popping. The trace wyws must be executable also in A. However,
because A has n states, during the computation on ws, it must necessarily enter
twice the same state such that it forms a loop on some substring w’ of wo. We can
moreover assume that h(w’) < 0. This means that by taking the loop sufficiently
many times A can achieve a trace w with h(w) < 1. However, this trace is not
possible from pX (any word w such that pX — satisfies that h(w) > —1). This
is a contradiction. O

Lemma 4. Let pX be a vPDA configuration which does not provide unbounded
popping. Then pX is reqular w.r.t. isomorphism of labelled transition systems.

Proof. Assume that pX does not provide unbounded popping. In other words,
there is a constant d,,., such that for every process g0 reachable from pX it is
the case that for any computation starting from ¢, the stack height |3| cannot
be decreased by more than d,,.; symbols. This means that in any reachable
configuration it is necessary to remember only d,, 4, top-most stack symbols and
hence the system can be up to isomorphism described as a finite-state system
(in general of exponential size). O
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Theorem 5. Let pX be a vPDA configuration. Then, for any equivalence rela-
tion between trace equivalence and isomorphism of labelled transition systems,
pX provides unbounded popping if and only if pX is not reqular.

Proof. Directly from Lemma 3 and Lemma 4. O

Theorem 6. Regularity checking of vPDA w.r.t. any equivalence between trace
equivalence and isomorphism of labelled transition systems (in particular also
w.r.t. any equivalence considered in this paper) is decidable in deterministic poly-
nomial time. The problems are P-complete for vPDA and vBPA and NL-complete
for viCA.

Proof (Sketch). We can check for every ¢ € @ and Y € I' whether the regular
set post*(qY) N pre*({re | r € @}) is infinite. If yes, this means that ¢Y has
infinitely many different successors (with higher and higher stacks) such that all
of them can be completely emptied. To see whether a given vPDA process pX
provides unbounded popping, it is now enough to test whether pX € pre*(¢Y ™)
for some ¢Y satisfying the condition above. The test can be done in polynomial
time because the sets pre* and post™ are regular and computable in polynomial
time as showed e.g. in [7]. The proofs of P-completeness and NL-completeness
are in the full version of the paper. O

5 Conclusion

In the following table we provide a comparison of bisimulation, simulation and
regularity (w.r.t. bisimilarity) checking on PDA, 1CA, BPA and their subclasses
vPDA, v1CA, vBPA. Results achieved in this paper are in bold.

~ Cs and =4 ~-regularity
decidable [22] . ?
PDA decidable [1
EXPTIME-hard [17]  "P4edable 0] oy b i hard [17,24]
pps in EXPTIME in EXPTIME P-compl.

EXPTIME-hard [17] EXPTIME-hard [17]

1CA decidable [12] decidable [12]
PSPACE-hard P-hard [5,24]

viCA PSPACE-compl. PSPACE-compl. NL-compl.

in 2-EXPTIME [8] in 2-EXPTIME [9,8]

undecidable [14]

BPA  DSPACE-hard [pa]  "decidable [10) PSPACE-hard [24]
in P in P
vBPA P-hard [5] P-hard [21] P-compl.

In fact, our results about EXPTIME-completeness for vPDA, PSPACE-
completeness for vICA and P-completeness for vBPA hold for all preorders and
equivalences between simulation preorder and bisimulation equivalence studied
in the literature (like completed simulation, ready simulation and 2-nested simu-
lation). The results confirm a general trend seen in the classical language theory
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of pushdown automata: a relatively minor restriction (from the practical point
of view) of being able to distinguish call, return and internal actions often sig-
nificantly improves the complexity of the studied problems and sometimes even
changes undecidable problems into decidable ones, moreover with reasonable
complexity upper bounds.

All the upper bounds proved in this paper are matched by the correspond-
ing lower bounds. Here the most interesting result is PSPACE-hardness of pre-
order/equivalence checking on v1CA for all relations between simulation preorder
and bisimulation equivalence. As noted in Remark 2, this proof improves also a
number of other complexity lower bounds for problems on standard one-counter
nets and one-counter automata, which were previously known to be only DP-
hard (DP-hardness is, most likely, a slightly stronger result than NP and co-NP
hardness).

Finally, we have proved that for all the studied equivalences, the regular-
ity problem is decidable in polynomial time. Checking whether an infinite-state
process is equivalent to some regular one is a relevant question because many
problems about such a process can be answered by verifying the equivalent finite-
state system and for finite-state systems many efficient algorithms have been
developed. A rather interesting observation is that preorder/equivalence check-
ing on vBPA for preorders/equivalences between simulation and bisimilarity can
be polynomially translated to verification problems on finite-state systems. On
the other hand, the class of vBPA processes is significantly larger than the class
of finite-state processes and hence the questions, whether for a given vPDA (or
v1CA) process there is some equivalent vBPA process, are of a particular interest.
We shall investigate these questions in the future research, as well as a general-
ization of the unbounded popping property for visibly pushdown automata that
enable to perform return actions also on the empty stack.

Acknowledgments. 1 would like to thank Markus Lohrey for a discussion at
ETAPS’06 and for a reference to PSPACE-completeness of the emptiness prob-
lem for alternating automata over one-letter alphabet. My thanks go also to the
referees of CSL’06 for their useful comments and for suggesting the P-hardness
proof of regularity checking for vPDA and vBPA.
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Abstract. Model checking properties are often described by means of
finite automata. Any particular such automaton divides the set of infinite
trees into finitely many classes, according to which state has an infinite
run. Building the full type hierarchy upon this interpretation of the base
type gives a finite semantics for simply-typed lambda-trees.

A calculus based on this semantics is proven sound and complete.
In particular, for regular infinite lambda-trees it is decidable whether a
given automaton has a run or not. As regular lambda-trees are precisely
recursion schemes, this decidability result holds for arbitrary recursion
schemes of arbitrary level, without any syntactical restriction. This par-
tially solves an open problem of Knapik, Niwinski and Urzyczyn.

1 Introduction and Related Work

The lambda calculus has long been used as a model of computation. Restricting
it to simple types allows for a particularly simple set-theoretic semantics. The
drawback, however, is that only few functions can be defined in the simply-typed
lambda calculus. To overcome this problem one can, for example, add fixed-point
combinators Y, at every type, or allow infinitary lambda terms. The latter is
more flexible, as we can always syntactically unfold fixed points, paying the price
to obtain an infinite, but regular, lambda-tree.

Finite automata are a standard tool in the realm of model checking [10]. They
provide a concrete machine model for the properties to be verified. In this ar-
ticle we combine automata, and hence properties relevant for model checking,
with the infinitary simply-typed lambda calculus, using the fact that the stan-
dard set theoretic semantics for the simple types has a free parameter — the
interpretation of the base type.

More precisely, we consider the following problem.

Given a, possibly infinite, simply-typed lambda-tree ¢ of base type, and
given a non-deterministic tree automaton 2. Does 2 have a run on the
normal form of ¢?

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 104-118, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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The idea is to provide a “proof” of a run of 2 on the normal form of ¢ by
annotating each subterm of ¢t with a semantical value describing how this subterm
“looks, as seen by 2”. Since, in the end, all the annotations turn out to be out
of a fixed finite set, the existence of such a proof is decidable.

So, what does a lambda-tree look like, if seen by an automaton A7 At the
base type, a lambda-tree denotes an infinite term. Hence, from 2’s point of
view, we have to distinguish for which states there is an infinite run starting in
this particular state.

Since we are interested in model checking terms of base type only, we can
use any semantics for higher types, as long as it is adequate, that is, sound and
complete. So we use the most simple one available, that is, the full set-theoretic
semantics with the base type interpreted as just discussed. This yields a finite
set as semantical realm for every type.

As an application of the techniques developed in this article, we show that
for arbitrary recursion schemes it is decidable whether the defined tree has a
property expressible by an automaton with trivial acceptance condition. This
gives a partial answer to an open problem by Knapik, Niwinski and Urzyczyn [5].

Infinitary lambda-trees were also considered by Knapik, Niwinski and Urzy-
czyn [4], who also proved the decidability of the Monadic Second Order (MSO)
theory of trees given by recursion schemes enjoying a certain “safety” condi-
tion [5]. The fact, that the safety restriction can be dropped at level two has
been shown by Aehlig, de Miranda and Ong [2], and, independently, by Knapik,
Niwinski, Urzyczyn and Walukiewicz [6]. The work of the former group also uses
implicitly the idea of a “proof” that a particular automaton has a run on the
normal form of a given infinite lambda-tree.

Recently [9] Luke Ong showed simultaneously and independently that the
safety restriction can be dropped for all levels and still decidability for the full
MSO theory is obtained. His approach is based on game semantics and is techni-
cally quite involved. Therefore, the author believes that his approach, due to its
simplicity and straight forwardness, is still of interest, despite showing a weaker
result. Moreover, the novel construction of a finite semantics and its adequacy
even in a coinductive setting seem to be of independent interest.

2 Preliminaries

Let X’/ be a set of letters or terminals. We use f to denote elements of X’. Each
terminal f is associated an arity §(f) € N.

Definition 1. Define ¥ = X' U {R, 8} with R, two new terminals of arity
one.

Definition 2. For A a set of terminals, a A-term is a, not necessarily well-
founded, tree labelled with elements of A where every node labelled with f has
#(f) many children.

Ezample 3. Let X' = {£f,g,a} with £, g and a of arities 2, 1, and 0, respectively.
Figure 1 shows two X’-terms.
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Let 2 be a fixed nondeterministic tree automaton with state set @) and transition
function 6: Q x X — P((QU {*})V) where N = max{ti(g) | g € X} is the
maximal arity and &(g, g) C Q*®) x {x}N~#9) whenever ¢ € Q and g € X.

In other words, let 2l be a nondeterministic tree automaton that works on
2)-terms.

Definition 4. We say that 2 has a run up to level n, if it has a run that goes
at least till all nodes with distance at most n from the root.

We write 2, ¢ E™ t to denote that 2 has a
run on ¢ up to level n starting in state q. We
write 2, ¢ ="t to denote that 2 has an infi-
nite run on t starting in state ¢. Since there
are only finitely many ways to extend a run
of length n to one of length n + 1, by Konig’s

>

agsg
g Lemma we obtain that 2, ¢ =° ¢ if and only
A g if Vn.2l, g =" t.
a g g Ezample 5. Continuing Example 3 consider
/f\ g the property
g ag
/f\ g “Every maximal chain of letters g has
ag even length”.
g
g g It can be expressed by an automaton with two
a states @ = {q2,q1} where g2 means that an

even number of gs has been passed on the path
so far, where ¢; means that the maximal chain
of gs passed has odd length. Then the initial
state is ¢o and the transition function is as
follows.

6(£,q2) = {(q2,92)} 8(f,q1) =0
6(g,q2) = {(q1,%)} 6(g,q1) = {(g2, %)}
6(a,q2) = {(*,%)} 6(a,q1) =0

This automaton can be extended to work on X-trees by setting 6(¢,R) =
6(¢q,08) = {(g,%)}. Note that this automaton has an infinite run on the second
tree in Figure 1, whereas it has a run only up to level 3 on the first one.

Fig.1. Two {f, g, a}-terms

Definition 6. The simple types, denoted by p, o, 7, are built from the base
type ¢ by arrows p — o. The arrow associates to the right. In particular, p” — ¢
is short for p1 — (p2 — (-.. (pn — ¢)...)).

Definition 7. Infinitary simply-typed lambda-trees over typed terminals X’ are
coinductively given by the grammar
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r,s n= axf | (AaPt?)P77 | (tPT0sP)T | f T T T

In other words, they are, not-necessarily well founded, trees built, in a locally
type respecting way, from unary Azf-nodes, binary @-nodes representing ap-
plication, and leaf nodes consisting of typed variables x* of type p and typed
constants f € X’ of type L= o — L=
#(f)

Here Ax” binds free occurrences of the variable z* in its body. Trees with all
variables bound are called closed.

A lambda-tree with only finitely many non-isomorphic subtrees is called
regular.

We omit type superscripts if they are clear from the context, or irrelevant.

We usually leave out the words “simply typed”, tacitly assuming all our
lambda-trees to be simply typed and to use terminals from X’ only. Figure 2
shows two regular lambda-trees. Arrows are used to show where the pattern re-
peats, or to draw isomorphic subtrees only once. Note that they denote terms
(shown in Figure 1) that are not regular. Here, by “denote” we mean the term
reading of the normal form.

S

A
- AN
Q@ g
ST~
@ @
N ~
i a @

N N

(@) @
A ™ A
N AN

g =z
Fig. 2. Two regular lambda-trees with denotation being the {f, g, a}-terms in Figure 1

Remark 8. Tt should be noted that in lambda-trees, as opposed to X’-terms, all
constants and variables, no matter what their type is, occur at leaf positions.

The reason is, that in a lambda-calculus setting the main concept is that of
an application. This is different from first order terms, where the constructors
are the main concept.
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Note that we use lambda-trees to denote X’-terms. As these are different
concepts, even normal lambda-trees differ from their denotation. For example

the lambda-tree denotes the Y'-term /g\ .

g a

3 Recursion Schemes as Means to Define Regular
Lambda Trees

The interest in infinitary lambda-trees in the verification community recently
arose by the study of recursion schemes. It could be shown [4,5] that under a
certain “safety” condition the (infinite) terms generated by recursion schemes
have decidable monadic second order theory. For our purpose it is enough to
consider recursion schemes as a convenient means to define regular lambda-trees.

Definition 9. Recursion schemes are given by a set of first order terminal sym-
bols, simply-typed non-terminal symbols and for every non-terminal F' an equa-
tion

FZ =e

where e is an expression of ground type built up from terminals, non-terminals
and the variables T~ by type-respecting application. There is a distinguished
non-terminal symbol S of ground type, called the start symbol.

Definition 10. Each recursion scheme denotes, in the obvious way, a partial, in
general infinite, term built from the terminals. Starting from the start symbol,
recursively replace the outer-most non-terminals by their definitions with the
arguments substituted in appropriately.

Definition 11. To every recursion scheme is associated a regular lambda-tree
in the following way. First replace all equations FZ = e by

F=\T.c

where the right hand side is read as a lambda term.
Then, starting from the start symbol, recursively replace all non-terminals by
their definition without performing any computations.

Remark 12. Immediately from the definition we note that the S-normal form of
the lambda-tree associated with a recursion scheme, when read a term, s the
term denoted by that recursion scheme.

Example 13. Figure 3 shows two recursion schemes with non-terminals F': ¢ — ¢,
F':(t—1) =, W: (t—1) > 1—,and S, S": ¢. Their corresponding lambda-
trees are the ones shown in Figure 2. The sharing of an isomorphic sub-tree arises
as both are translations of the same non-terminal W. As already observed, these
recursion schemes denote the terms shown in Figure 1.
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S =Fa S/, - F’(Wg)/
Fo-mry G ZHOEVe)

Fig. 3. Two recursion schemes

Remark 14. The notion of a recursion scheme wouldn’t change if we allowed -
abstractions on the right hand side of the equations; we can always build the
closure and “factor it out” as a new non-terminal. For example, the W in the
definition of F’ in Figure 3 should be thought of as a factored-out closure of a
line that originally looked

F'o = £(pa)(F'(Az.¢(px))) -

4 Using Continuous Normalisation

As mentioned in the introduction, we are interested in the question, whether 2A
has a run on the normal form of some lambda-tree ¢. Our plan to investigate
this question is by analysing the term ¢.

However, there is no bound on the number of nodes of ¢ that have to be
inspected, and no bound on the number of beta-reductions to be carried out,
before the first symbol of the normal form is determined — if it ever will be. In
fact, it may well be that an infinite simply-typed lambda-tree leaves the normal
form undefined at some point.

Whereas the first observation is merely a huge inconvenience, the second ob-
servation makes it unclear what it even is supposed to mean that “2 has a run
on the normal form of t” — if there is no such normal form.

Fortunately, it is long known how to overcome this problem. If we don’t know
any definite answer yet, we just output a “don’t know” constructor and carry on.
This idea is known as “continuous normalisation” [7,8] and is quite natural [1]
in the realm of the lambda calculus.

Deﬁmtlon 15. For t, 7 closed infinitary blmply typed lambda-trees such that
T is of ground type we define a X-term t@ T coinductively as follows.

(rs)@t = R(rQ(s, T )

(\z.r)@(s, t) = B(r[s/z]Qt)

jat =f(ty,....t0)
Here we used r[s/z] to denote the substitution of s for  in r. This substitution
is necessarily capture free as s is closed. By f(71,...,T,) we denote the term
with label { at the root and T1,...,T, as its n children; this includes the case

n = 0, where f() denotes the term consisting of a single node f. Similar notation
is used for R(T") and 3(T). Moreover we used 77 as a shorthand for r@().

Immediately from the definition we notice that, after removing the R and f
constructors, @73 is the term reading of the normal form of rs’, whenever the
latter is defined.
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The number of § constructors counts the number of reductions necessary to
reach a particular letter of the normal form [1]. Therefore, 2 can talk not only
about properties of the normal form of ¢, but also about the computation that
led there.

It should be noted that no price has to be paid for this extra expressivity.
Given an automaton on X’ we can extend its transition function § by setting

6(¢;R) = 6(q,8) = {(g,% -, %)}

5 Finitary Semantics and Proof System

The main technical idea of this article is to use a finite semantics for the simple
types, describing how 2 “sees” an object of that type.

Definition 16. For 7 a simple type we define [r] inductively as follows.

[ =PQ
I — o] =W[o]

In other words, we start with the powerset of the state set of 2 in the base case,
and use the full set theoretic function space for arrow-types.

Remark 17. Obviously all the [r] are finite sets.

Ezample 18. Taking the automaton 2 of Example 5, we have [] = {0, {g2},
{1}, Q} and examples of elements of [t — ¢] include the identity function id,
as well as the “swap function” swap defined by swap() = 0, swap(Q) = Q,
swap({g2}) = {@1}, and swap({¢1}) = {2}-

Definition 19. [r] is partially ordered as follows.

— For R,Se|]weset RESiIff RCS.
— For f,g€[p— o] weset fC giff Va € [p].fa C ga.

Remark 20. Obviously suprema and infima with respect to C exist.

We often need the concept “continue with f after reading one R symbol”. We
call this R-lifting. Similar for 3.

Definition 21. For f € [p’ — (] we define the liftings R(f), 3(f) € [p’ — {] as
follows.
T R(@) = (0166,R) 0 ST x o) x o x fe) £0)

BUH(@) ={a|8(a,B)Nfa’ x {x} x...x {x}#0}

Remark 22. Tf 2 is obtained from an automaton working on X’-terms by setting

6(¢;R) = 6(q,8) = {(q,*, ..., %)} then R(f) = B(f) = [ for all f.

Using this finite semantics we can use it to annotate a lambda-tree by semantical
values for its subtrees to show that the denoted term has good properties with
respect to 2. We start by an example.
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Sl

id — {qg} >)\(p Q < id
el
Iy F{q} @ g« swap
Iy F{q2} — {a} ~Q Q< Iy - {q2}
I'oF{g}—{e}t—{e} »£ a @« I'yFid
7N /N A
T b {g2} p a Ao @ I, Fid
I, Fid / M:\ I,id and I, +id
Ty = {g2} Q= Tpw b {g} and T}, F {g}
/\ F%m/ = {Q1} and F(;ﬂw/ F {QI}
id — id and swap +— id p @ ,
i NN L) and T, F (o}
I'pztid and I, F swap s & TowbF{q} and T, .+ {g}

I

v Fid and I, b swap

Fow{g2} and I .+ {g}
Iy -{q1} and F;’x/ Fo{q:}

Fig. 4. A proof that 2 has an infinite run starting in g2 on the denoted term

Ezxample 23. The second recursion scheme in Figure 3 denotes a term where the
“side branches” contain 2,4, 8,...,2" ... times the letter g. As these are all even
numbers, 2 should have a run when starting in gs.

So we start by assigning the root {g2} € [¢]. Since the term is an application, we
have to guess the semantics of the argument (of type ¢ — ¢). Our (correct) guess
is, that it keeps the parity of gs unchanged, hence our guess is id; the function
side then must be something that maps id to {g2}. Let us denote by id — {g2}
the function in 4[] defined by (id — {g2})(id) = {g2} and (id — {g2})(f) =0
if f#£id.

The next node to the left is an abstraction. So we have to assign the body
the value {¢g2} in a context where ¢ is mapped to id. Let us denote this context
by I,.

In a similar way we fill out the remaining annotations. Figure 4 shows the
whole proof. Here I“; is the context that maps ¢ to swap; moreover I, 5, I,

, T
Iy, and I7, , are the same as I, and Iy, but with 2 mapped to {g2} and {(}01},
respectively.

It should be noted that a similar attempt to assign semantical values to the
other lambda-tree in Figure 2 fails at the down-most x where in the context I

with I'(z) = {g2} we cannot assign x the value {q1}.

To make the intuition of the example precise, we formally define a “proof system”
of possible annotations (I, a) for a (sub)tree. Since the [r] are all finite sets, there
are only finitely many possible annotations.
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To simplify the later argument on our proof, which otherwise would be coin-
ductive, we add a level n to our notion of proof. This level should be interpreted
as “for up to n steps we can pretend to have a proof”. This reflects the fact that
coinduction is nothing but induction on observations.

Definition 24. For I" a finite mapping from variables 27 to their corresponding
semantics [0], a value a € [p], and ¢ an infinitary, maybe open, lambda-tree of
type p, with free variables among dom(I"), we define

I'rgaCt:p
by induction on the natural number n as follows.

— I't§ a C t: p always holds.

— I'Fj a T x; : p holds, provided a T I'(x;).

— Ittt a C st : o holds, provided there exists f € [p — o], u € [p] such that
aCR(fu), 'Fy fCs:p—o,and I Fjul t:p.

— 'yt fE M\a’.s 0 p — o holds, provided for all a € [] there is a b, € [o]
such that fa C B(b,) and I'¢ FJ by C s: 0.

— 'y fCf:t—...— ¢ — ¢ holds, provided for all @ € [¢'] we have fa’ C
{a16(q, 1) Nar x ... xaygy x {x} x ... x {x} #0}.

It should be noted that all the quantifiers in the rules range over finite sets.
Hence the correctness of a rule application can be checked effectively (and even
by a finite automaton).

We write I' = a £ ¢ : p to denote Vn.I'Fy a Et: p.

Remark 25. Obviously I’ }—glﬂ aCt:p implies I'FyaEt:p. Moreover,
a C aand I'FjaCt:pimply I'Fja’' Ct:p. Finally, 'y aTt:p, if
I'" 5 a £t : p for some I which agrees with I" on the free variables of ¢.

As already mentioned, for ¢ a term with finitely many free variables, the anno-
tations (I, a) come from a fixed finite set, since we can restrict I" to the set of
free variables of ¢. If, moreover, ¢ has only finitely many different sub-trees, that
is to say, if t is regular, then only finitely many terms ¢ have to be considered.
So we obtain

Proposition 26. Fort regular, it is decidable whether I' 3y a Tt : p.

Before we continue and show our calculus in Definition 24 to be sound (Sec-
tion 6) and complete (Section 7) let us step back and see what we will then have
achieved, once our calculus is proven sound and complete.

Proposition 26 gives us decidability for terms denoted by regular lambda-trees,
and hence in particular for trees obtained by recursion schemes. Moreover, since
the annotations only have to fit locally, individual subtrees of the lambda-tree
can be verified separately. This is of interest, as for each non-terminal a separate
subtree is generated. In other words, this approach allows for modular verifica-
tion; think of the different non-terminals as different subroutines. As the seman-
tics is the set-theoretic one, the annotations are clear enough to be meaningful,
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if we have chosen our automaton in such a way that the individual states can
be interpreted extensionally, for example as “even” versus “odd” number of gs.

It should also be noted, that the number of possible annotations only depends
on the type of the subtree, and on 2, that is, the property to be investigated.
Fixing 2 and the allowed types (which both usually tend to be quite small), the
amount of work to be carried out grows only linearly with the representation of ¢
as a regular lambda-tree. For every node we have to make a guess and we have to
check whether this guess is consistent with the guesses for the (at most two) child
nodes. Given that the number of nodes of the representation of ¢ growth linearly
with the size of the recursion scheme, the problem is in fixed-parameter-NP,
which doesn’t seem too bad for practical applications.

6 Truth Relation and Proof of Soundness

The soundness of a calculus is usually shown by using a logical relation, that
is, a relation indexed by a type that interprets the type arrow “—” as logical
arrow “="; in other words, we define partial truth predicates for the individual
types [11].

Since we want to do induction on the “observation depth” m of our proof
-F§ - & - : 7 we have to include that depth in the definition of our truth pred-
icates - g - : 7. For technical reasons we have to build in weakening on this
depth as well.

Definition 27. For f € [p' — ], n € N, t a closed infinitary lambda tree of
type p — ¢, the relation f =B t:p — s defined by induction on the type as
follows. -
f=yt:p —¢ iff
¥ <nvT € [FNT i 7
(Vi.a; <& i pi) =Vge fa. .U q="tQr

Remark 28. Immediately from the definition we get the following monotonicity

property.
If fC f and f" <G t:pthen f <G t:p.

Remark 29. In the special case p’ = € we get
S <yt iff Vg e S, q =" tP
Here we used that V¢ < n. A, q = s iff A, ¢ =" s.
Immediately from the definition we obtain weakening in the level.
Proposition 30. If f <j t: p then f —«&71 t:p.

Theorem 31. Assumel 3 a Ct: p for someI" with domain {x,...,x2}. For

all ¢ < n and all closed terms T o, if Yi. () «g ti:p; then
Y i

a <y tlt /@] p.
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Proof. Induction on n, cases according to I' =g a E ¢ : p.

We just show the case of the A-rule. The other cases are similar, and even
simpler.

Case I' b3 f C AaP.s : p — o thanks to Va € [p] b, € [o] such that fa C
B(by) and I' F5 bo T s: 0.

Let £ <n+1 be given and ? : ? with I'(z;) «gl ti: pi

We have to show f <& (Az”s7)n: p — o where 7 is short for [?/_)]

Let o have the form 0 = o — . Let k < ¢ be given and r: p, 5 : 7, ¢ € [p],
¢; € [oi] such that ¢ —«’5[ rip, ¢ —«’5( si - 0;. We have to show for all ¢ € fcc
that A, ¢ =¥ (\zs)n@r, 5.

~ 4

-
ﬂ.sn;@?

Hence it suffices to show that there is a ¢ € 6(q,0) such that
A, G =1 sy

We know ¢ —«’gl r: p; using Proposition 30 we get ¢ _«1&71 r:p and
Vi. I'(x;) «Sl_l t;:pi. Since k < £ < n+1 we get k—1 < n, hence we may
apply the induction hypothesis to I'y -5 b, T s : o and obtain b, _«15(1 sny o,

Since again by Proposition 30 we also know ¢; «g‘_l s; : 03, we obtain for all
G € b, that A, G =F"1 snr@s .

Since fc C B(b.) we get that Vg € fcc'3G € §(q,3).G € b.c . This, together
with the last statement yields the claim.

It should be noted that in the proof of Theorem 31 in the cases of the A-rule and
the application-rule it was possible to use the induction hypothesis due to the fact
that we used continuous normalisation, as opposed to standard normalisation.

Corollary 32. Fort a closed infinitary lambda term we get immediately from
Theorem 31
DFE SCt:r = VqGS.Ql,q|:”tﬁ

In particular, if 0 =38 STt thenVge S. A q = 8.

7 The Canonical Semantics and the Proof of
Completeness

If we want to prove that there is an infinite run, then, in the case of an application
st, we have to guess a value for the term ¢ “cut out”.

We could assume an actual run be given and analyse the “communication”,
in the sense of game semantics [3], between the function s and its argument
t. However, it is simpler to assign each term a “canonical semantics” ()00,
roughly the supremum of all values we have canonical proofs for.

The subscript oo signifies that we only consider infinite runs. The reason is
that the level n in our proofs I' Fj a E t : p is not a tight bound; whenever we
have a proofs of level n, then there are runs for at least n steps, but on the other
hand, runs might be longer than the maximal level of a proof. This is due to the
fact that G-reduction moves subterms “downwards”, that is, further away from
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the root, and in that way may construct longer runs. The estimates in our proof
calculus, however, have to consider (in order to be sound) the worst case, that
is, that an argument is used immediately.

Since, in general, the term ¢ may also have free variables, we have to consider
a canonical semantics ((t))§  with respect to an environment I".

Definition 33. By induction on the type we define for ¢ a closed infinite lambda-
tree of type p = p  — ¢ its canonical semantics ()90 € [] as follows.

(thae (@) ={q|3F5": 0. (" hacw T @ A q > a5}
Remark 34. For t a closed term of base type we have (t)a0o = {q | A, q => t°}.

Definition 35. For I" a context, ¢: p typed in context I" of type p = p — 1 we
define ((t)4 . € [o] by the following explicit definition.

{(thiiee (@) = {g | In. dom(n) = dom(I')A
(Vac € dom(F) n(x) closed A {(n(z) Yoo T I'(x)) A
35 <<?>>moo Ca AAqE>nas}

Remark 36. For t a closed term and I' = () we have ()5 = (t)atco-

Proposition 37. If s has type & — ¢ in some context compatible with I", and
n is some substitution with dom(n) = dom(I") such that for all x € dom(I") we
have n(z) closed and {(n(z))aco C I'(x), then

{(sm)2tce T (8D droo

Proof. Let @ € [o'] and q € ((sn)ae (@) be given. Then there are 5 : o with
(3 Maoo T @ such that A, ¢ > sn@s . Together with the assumed properties
of n this witnesses ¢ € (s))d.(a).

Lemma 38. If r and s are terms of type ¢ — p — ¢ and o, respectively, in
some context compatible with I', then we have

{(rshaso & RI(r)aioe (5D atoo)

Proof. Let @ € [p] and ¢ € ((rs)i.. (@) be given. Then there is n with Va €
dom(I). {(n(z))aso T I'(x) and there are 5" : p” with (5 e C @ and

A, q > (rs)n@s’
~ -~ -

R.rnQsn,s
Hence there is a q € 6(¢q, R) with 2, ¢/ => rn@sn, s . It suffices to show that
for this ¢’ we have ¢’ € (r)&  (shi @
By Proposition 37 we have {(sn))gco T
@ . So the given 7 together with sn and

s\ and we already have ({3 )oioo T
witnesses ¢/ € (). (505 @

_ *

»|%
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Lemma 39. Assume that \xz.r has type 0 — p — 1 in some context compatible

with I'. Then .
(M) b (@) T B((r)acs)

Proof. Let @ € [p’] and q € {(Azr)&_ (a,a’) be given. Then there is an n with
Vz € dom(I") we have n(z) closed and ((n(z))ase T I'(z) and there are s, s
with (s)aee C @ and (3 )aeo C @ such that
A q > (Aar)n@Qs,s’
-~ rd

N~
Bro[sln@s

So there is a § € 6(q, ) with A, G = 7.[s]n@7 . It suffices to show that

~ ry —
q € (rate (@)
By the properties of  and since ($))aco = a we know that for all y € dom(I'%)
—
)

we have (n(y)Daco T I'%(y). This witnesses ¢ € <<r>>gio(a .
Lemma 40. (z)4 C I'(x)
Theorem 41. 'y (the  Ct:p

Proof. Induction on n, cases on ¢. Trivial for n = 0. So let n > 0. We distinguish
cases according to t. The cases rs, Az.r and x are immediately from the induction
hypotheses and Lemmata 38, 39, and 40, respectively.
So, let t = f be a terminal symbol. We have to show I' F5 (fN& . Cf:v— .
So, let S € [7] and q € {(f)L.(S). Hence there is are 5 of type ¢ with
{5 )9100 E S; and A, q = fQ5 .

\v/
i)
So there is (G1, ..., Gy, *,---, %) € 6(q,f) with A, g > si’g. But then ¢; €
{{sihace C Si.

Corollary 42. If t: + is closed and of ground type  then
OFg {a]Ag ==t} Tt

Finally, let us sum up what we have achieved.

Corollary 43. Fort a closed regular lambda term, and qo € @ it is decidable
whether A, gy > 1°.

Proof. By Proposition 26 it suffices to show that  -3° {go} T ¢ : ¢ holds, if and
only if A, gy > 7.

The “if”-direction follows from Corollary 42 and the weakening provided by
Remark 25. The “only if”-direction is provided by Corollary 32.

8 Model Checking

Formulae of Monadic Second Order Logic can be presented [10] by appropriate
tree automata. As mentioned, we consider here only a special case. More pre-
cisely, let ¢ be a property that can be recognised by a non-deterministic tree
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automaton with trivial acceptance condition, that is, an automaton accepting by
having an infinite run. In other words, let ¢ be such that there is an automaton
A, such that 7 = ¢ < A, qo = 7 holds for every X'-tree 7.

Applying the theory developed above to this setting we obtain the following.

Theorem 44. Given a tree T defined by an arbitrary recursion scheme (of arbi-
trary level) and a property ¢ that can be recognised by an automaton with trivial
acceptance condition it is decidable whether T = .

Proof. Let t be the infinite lambda-tree associated with the recursion scheme.
Then ¢ is effectively given as a regular closed lambda term of ground type and
7T is the normal form of ¢.

Let 2, be the automaton (with initial state go) describing ¢. By keeping the
state when reading a R or (it can be effectively extended to an automaton 2A
that works on the continuous normal form, rather than on the usual one. So
T = ¢ A, qo == t5. The latter, however, is decidable by Corollary 43.

Remark 45. As discussed after Proposition 26 the complexity is fixed-parameter
non-deterministic linear time in the size of the recursion scheme, if we consider
o and the allowed types as a parameter.
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Abstract. The linear lambda calculus is very weak in terms of expres-
sive power: in particular, all functions terminate in linear time. In this
paper we consider a simple extension with Booleans, natural numbers
and a linear iterator. We show properties of this linear version of Godel’s
System 7 and study the class of functions that can be represented. Sur-
prisingly, this linear calculus is extremely expressive: it is as powerful as
System 7.

1 Introduction

One of the many strands of work stemming from Girard’s Linear Logic [8] is
the area of linear functional programming (see for instance [1,19,14]). These
languages are based on a version of the A-calculus with a type system corre-
sponding to intuitionistic linear logic. One of the features of the calculus (which
can be seen as a minimal functional programming language) is that it provides
explicit syntactical constructs for copying and erasing terms (corresponding to
the exponentials in linear logic).

A question that arises from this work is what exactly is the computational
power of a linear calculus without the exponentials, i.e., a calculus that is syn-
tactically linear: all variables occur exactly once. This is a severely restricted
form of the (simply typed) A-calculus, and is summarised by just the following
three rules:

I'xz:A+t:B I'tt:A—oB AbFu: A
v:AFz: A Prazt:A—oB IAvtu:B

Due to the typing constraints—there is no contraction or weakening rule—terms
are linear. Reduction is given by the usual -reduction rule, but since there is
no duplication or erasing of terms during reduction, this calculus has limited
computational power—all functions terminate in linear time [12].
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Our work builds this language up by introducing: pairs, Booleans with a
conditional, and natural numbers with the corresponding iterator, to obtain
a linear version of Godel’s System 7 which we call System L. The study of
System L led us to the discovery of an interesting interplay between linearity
and iteration in Godel’s original System 7. We will show that there is a great
deal of redundancy in Gédel’s System 7 and the same computational power can
be achieved in a much more restricted system. Gédel’s System 7 is a formalism
built from the simply typed A-calculus, adding numbers and Booleans, and a
recursion operator. It is a very simple system, yet has enormous expressive power.
We will show that its power comes essentially from primitive recursion combined
with linear higher-order functions—we can achieve the same power in a calculus
which has these two ingredients: System L.

It is interesting to note that, in contrast with previous linear versions of
System 7 (e.g., [16,13]), System L accepts iterators on open linear functions,
since these terms are linear. Reduction is only performed on those terms if the
function becomes closed (i.e., reduction does not create non-linear terms). This
design choice has an enormous impact in the computation power of the calculus:
we show that our calculus is as powerful as System 7, whereas previous linear
calculi were strictly weaker (see [16]).

From another perspective there have been a number of calculi, again many
based on linear logic, for capturing specific complexity classes ([2,7,11,3,15,24,4]).
One of the main examples is that of bounded linear logic [11], which has as one
of its main aims to find a calculus in-between the linear A-calculus and that
with the exponentials (specifically the polynomial time computable functions).
There is also previous work that uses linear types to characterise computations
with time bounds [13]. Thus our work can be seen as establishing another cal-
culus with good computational properties which does not need the full power of
the exponentials, and introduces the non-linear features (copying and erasing)
through alternative means.

Summarising, this paper studies the computational power of a linear System
T, exposing the structure of the components of Gédel’s System 7. We show that
System 7 is intrinsically redundant, in that it has several ways of expressing
duplication and erasure. Can one eliminate this redundancy? The answer is yes;
in this paper we:

— define a linear A-calculus with natural numbers and an iterator, and intro-
duce iterative types and the closed reduction strategy for this calculus;

— show that we can define the whole class of primitive recursive functions in
this calculus, and more general functions such as Ackermann’s;

— demonstrate that this linear System 7 has the same computational power
as the full System 7.

In the next section we recall the background material. In Section 3 we define
System £ and in Section 4 we demonstrate that we can encode the primitive
recursive functions in this calculus, and even go considerably beyond this class
of functions. In Section 5 we show how to encode Gédel’s System 7. Finally we
conclude the paper in Section 6.
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2 Background

We assume the reader is familiar with the A-calculus [5], and with the main no-
tions on primitive recursive functions [23]. In this section we recall some notions
on Godel’s System 7, for more details we refer to [10].

System 7 is the simply typed A-calculus (with arrow types and products, and
the usual S-reduction and projection rules) where two basic types have been
added: numbers (built from 0 and S; we write 7 or S™ 0 for S ... (S 0)) and

N~ N 7

n
Booleans with a recursor and a conditional defined by the reduction rules:

ROuv —u cond trueu v — u
R(St)uv— v (Rtuv)t cond false u v — v

System 7T is confluent, strongly normalising and reduction preserves types (see
[10] for the complete system and results). It is well-known that an iterator has
the same computational power as the recursor. We will replace the recursor by
a simpler iterator:

iterOuv — u iter (St) uv — v(iter t u v)
with the following typing rule:
I'Frt:Nat OF7u:A Abrsv:A— A
IO, Atritertuv: A

In the rest of the paper, when we refer to System 7 it will be the system with
iterators rather than recursors (it is also confluent, strongly normalising, and
type preserving). We recall the following property, which is used in Section 5:

Lemmal. — IfI'tr Azu:T thenT =A— Band Iz : A7 w: B for
some A, B.

—IfI'tr m(s): T then I'7 s : T x B for some B.

— IfI'brma(s): T then I'tr s: AX T for some A.

We now define a call-by-name evaluation strategy for System 7: ¢t | v means
that the closed term t evaluates to the value v.

v is a value td Ae.t’ tu/z] v tl(s,s) slv tl(s,s) v

vi{wv tu v mi(t) $v ma(t) v
tlov tS"0 s"(u) v b || true tlov b || false ul v
StySw itertus{v condbtu v condbtul v

Values are terms of the form: S™0, true, false, (s, s’), Az.s.

Lemma 2 (Adequacy of - |} - for System 7). 1. Ift | v then t —™* v.
2.If'Ft:T,t closed, then:

T=Nat =t S(5...(50)) T=AxB =t|(u,s)
T=Bool=t|trueortlfalse T=A—B=t|Axs

A program in System 7 is a closed term at base type (Nat or Bool).



122 S. Alves et al.

3 Linear A-Calculus with Iterator: System L

In this section we extend the linear A-calculus [1] with numbers, Booleans, pairs,
and an iterator, and we specify a reduction strategy inspired by closed reduc-
tion [6,9]. We call this system System L. We begin by defining the set of linear
A-terms, which are terms from the A-calculus restricted in the following way
(fv(t) denotes the set of free variables of t).

x
Ax.t if x € fu(t)
tu i fv(t) Nfv(u) =2

Note that x is used at least once in the body of the abstraction, and the condition
on the application ensures that all variables are used at most once. Thus these
conditions ensure syntactic linearity (variables occur exactly once). Next we add
to this linear A-calculus: pairs, Booleans and numbers. Table 1 summarises the
syntax of System L.
Pairs:

(t, u) if fv(t) Nfv(u) = @

let (z,y) =tinwu if x,y € fv(u) and fv(t) Nfv(u) =9

Note that when projecting from a pair, we use both projections. A simple ex-
ample of such a term is the function that swaps the components of a pair:
Az.let (y,z) =z in (z,y).

Booleans: true and false, and a conditional:

condtuwv if fv(t) Nfv(u) = @ and fv(u) = fv(v)

Note that this linear conditional uses the same resources in each branch.
Numbers: 0 and S, and an iterator:

iter t wv if fv(t)Nfv(u) =fv(u)Nfv(v) =fv(v)Nfv(t) =

Table 1.
Construction  Variable Constraint Free Variables (fv)
0, true, false — %]
St — fv(t)
iter t u v fv(t) Nfv(u) = fv(u) Nfv(v) = fv(t) U fv(u) U fv(v)
fv(t) Nfv(v) = @
x — {z}
tu fv(t) Nfv(u) =@ fv(t) U fuv(u)
Azt z € fv(t) fv(t) ~ {z}
(t,u) fv(t) Nfv(u) = @ fv(t) Ufv(u)
let (z,y) =t inu fv(t) Nfv(u) = @, z,y € fv(u) fv(t) U (fv(u) \ {z,y})
cond t uwv fv(u) = fv(v), fv(t) Nfv(u) = & fv(t) U fv(u)
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Table 2. Closed reduction

Name Reduction Condition

Beta (Az.t)v — t[v/x] fv(v) =@

Let let (z,y) = (t,u) in v — (v[t/z])[u/y] fv(t) = fv(u) = @
Cond cond true u v —u

Cond cond false u v — v

Iter iter (St) uv — v(iter t uv) fv(tv) =@

Iter iter 0 u v —u fv(v) =@

Definition 1 (Closed Reduction). Table 2 gives the reduction rules for Sys-
tem L, substitution is a meta-operation defined as usual. Reductions can take
place in any context.

Reduction is weak: for example, Az.(Ay.y)z is a normal form. Note that all the
substitutions created during reduction (rules Beta, Let) are closed; this corre-
sponds to a closed-argument reduction strategy (called ca in [6]). Also note that
Iter rules are only triggered when the function v is closed.

The following results are proved by induction, by showing that substitution
and reduction preserve the variable constraints given in Table 1.

Lemma 3 (Correctness of Substitution). Let t and u be valid terms, x €
fv(t), and fv(u) = @, then tlu/x] is valid.

Lemma 4 (Correctness of —). Let t be a valid term, and t — wu, then:

1. fv(t) = fv(u);
2. w is a valid term.

Although reduction preserves the free variables of the term, a subterm of the
form iter n u v may become closed after a reduction in a superterm, triggering
in this way a reduction with an [ter rule.

3.1 Typed Terms

The set of linear types is generated by the grammar:
A,B ::=Nat|Bool| A—oB|A®B

Definition 2. Let Ag,..., A, be a list of linear types (note that Ag,..., A,
cannot be empty). It(Ao,...,A,) denotes a non-empty set of iterative types
defined by induction on n:

n=20: It(Ao) = {AO —0 A()}

n=1: It(AmAl) = {AO —0 Al}

n>2: It(Am .. ,An) = It(A(), ce ,Anfl) @] {An,1 —0 An}

Iterative types will serve to type the functions used in iterators. Note that
It(Ag) = It(Ao, Ag) = It(Ao, ..., Ag). We associate types to terms in System £
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Axiom and Structural Rule:

ax:Ay:B Abgt:C

(Axiom) (Exchange)
r:Abca: A I'y:B,x: A AbFst:C
Logical Rules:
Ix:Abpt: B I'trt:A—-oB Absu:A
(—olntro) (—oElim)
I'tedxt: A—oB I'NAbrstu: B
I'Fet: A Absu:B I'tet:A®B z:Ay:B,Abrsu:C
(®Intro) (®Elim)
I'N'Abg (t,u) : AR B I'N'Abglet (z,y)=tinu:C
Numbers
I'bz n:Nat
(Zero) (Succ)
Pz 0: Nat I'beSn:Nat

I'tet:Nat OFcu:Ay Abgwv:It(Ao,...,An) (*)( )
Iter
'O, At itertuv: A,
(%) where if £ = S™ 0 then n = m otherwise n =0

Booleans
(True) (False)
k¢ true : Bool k. false : Bool

Abst:Bool I'Fpu:A I'FLv: A
(Cond)
INAbgcondtuv: A

Fig. 1. Type System for System L

using the typing rules given in Figure 1, where we use the following abbrevia-
tions: I' Fp t = Tt(Ao, ..., An) i I' g t: B for each B € It(Ag,...,A,). We
use a Curry-style type system; the typing rules specify how to assign types to
untyped terms (there are no type decorations).

Note that the only structural rule in Figure 1 is Exchange, we do not have
Weakening and Contraction rules: we are in a linear system. For the same reason,
the logical rules split the context between the premises. The rules for numbers
are standard. In the case of a term of the form iter ¢ u v, we check that ¢ is a term
of type Nat and that v and u are compatible. There are two cases: if ¢ is S™ 0 then
we require v to be a function that can be iterated n times on u. Otherwise, if ¢ is
not (yet) a number, we require v to have a type that allows it to be iterated any
number of times (i.e. u has type A and v : A —o A, for some type A). The typing
of iterators is therefore more flexible than in System 7, but we will see that this
extra flexibility does not compromise the confluence and strong normalisation
of the system. Also note that we allow the typing of iter ¢t u v even if v is open
(in contrast with [16,13]), but we do not allow reduction until v is closed. This
feature gives our system the full power of System 7 (whereas systems that do
not allow building iter with v open are strictly weaker [16]).

We denote by dom(I") the set of variables x; such that x; : A; € I'. Since
there are no Weakening and Contraction rules, we have:
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Lemma 5. If ', t: A then dom(I") = fv(t).

Theorem 1 (Subject Reduction). If I' o M : A and M — N, then
'k, N: A

Proof. By induction on the type derivation I' -y M : A, using a Substitution
Lemma: If Iz : Abg t: Band A b u: A (where fv(t) Nfv(u) = @) then
I''Abp tlu/z] : B. O

3.2 Strong Normalisation

In System L, every sequence of reductions starting from a typable term is finite
(i.e. typable terms are strongly normalisable). Note that, although System £
extends the linear A-calculus (where every term is strongly normalisable), un-
typed terms of System £ may have infinite reductions. Strong normalisation for
System L is a consequence of strong normalisation for System 7. We start by
defining a translation from System £ into System 7.

Definition 3. We define the compilation of types and terms in System L into
System T, denoted [-], in the following way:

[Nat] =Nat [Bool] =Bool
[A— B]=[A] — [B] [A® B]=[A] x [B]
[0] =0
[true] = true
[false] = false

%S]]t]] =S

[My-t] = Ay.[t]

[tu] = [t][u]

[{t, w1 = ([], [u])

[tet (z,y) =t inu] = [u][(m[1])/2][(m2[t])/v]

[cond t u v] = cond [t] [u] [v]

. ) [ol™([u]) ift=S™0, m >0
liter t w o] B {iter [t] [u] [v] otherwise

UI=ux: A, ...¢n 0 Ay, then [I'] = 21 : [A1],...2n ¢ [An]- Note that the
translation of an iterator where the number of times to iterate is known and
positive, develops this iteration. If it is zero or not known we use System 7’s
iterator.

Theorem 2 (Strong Normalisation). If I' k. t : T, t is strongly
normalisable.

Proof (Sketch). Strong normalisation for System L is proved by mapping all
the reduction steps in System £ into one or more reduction steps in System 7.
Notice that reduction steps of the form iter S™*10 u v — v(iter S™0 u v) map
into zero reduction steps in System 7, but we can prove that any sequence of
reduction steps of that form is always terminating. O
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3.3 Church-Rosser

System L is confluent, which implies that normal forms are unique. For typable
terms, confluence is a direct consequence of strong normalisation and the fact
that the rules are non-overlapping (using Newmann’s Lemma [21]). In fact, all
System L terms are confluent even if they are non-terminating: this can be
proved using parallel-reductions.

Theorem 3 (Church-Rosser). Ift —* t1 andt —"* to, then there is a term
t3 such that t1 —* t3 and to —™ t3.

Theorem 4 (Adequacy). If t is closed and typable, then one of the following
holds:

—Fet:Natandt —* n

— k¢ t: Bool and t —* true or t —* false

— ke t: A—o B and t —* Az.u for some term u.
—Fet: A® B and t —* (u,v) for some terms u,v.

Proof. By Lemma 5, typing judgements for ¢ have the form . ¢ : T, and T is
either Nat, Bool, A—o B or A® B. By Subject Reduction, Strong Normalisation,
and Lemma 4, we know that ¢ has a closed, typable normal form u. We show the
case when . wu : Nat, the others follow with similar reasoning. Since w is a closed
term of type Nat, it cannot be a variable, an abstraction or a pair. Hence u is
either an application, a pair projection, a conditional, an iterator or a number.

— Let u = ujus ... u,, n > 2, such that u; is not an application. Then wuq is
closed, and since u is typable, u; must have an arrow type. But then by
induction u; is an abstraction, and then the Beta rule would apply, contra-
dicting our assumptions.

— Let u = let (x,y) = s in v. Then s is closed and fv(v) = {z,y}. Since u
is typable, s has type A ® B, and by induction it should be a (closed) pair
(s1, 82). But then the Let rule would apply contradicting our assumptions.

— Let w = cond n s v. Then n, t, v are closed. Since u is typable, n must have
a Boolean type, and by induction it should be either true or false. But then
the Cond rule would apply contradicting our assumptions.

— Let u = iter n s v. Since u is closed, so are n, t and v. Since u is typable n
must be a term of type Nat, and by induction, n is a number. But then the
Iter rule would apply contradicting our assumptions.

Thus, if -, ¢ : Nat then ¢ reduces to a number. a

4 Primitive Recursive Functions Linearly

In this section we show how to define the primitive recursive functions in System
L. We conclude the section indicating that we can encode substantially more
than primitive recursive functions.
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Erasing linearly. Although System L is a linear calculus, we can erase numbers.
In particular, we can define the projection functions fst,snd : Nat ® Nat —o Nat:

fst = Az.let (u,v) =z initer v u (A\z.2)
snd = Az.let (u,v) =z initer u v (\z.2)

Lemma 6. For any numbers a and b, fst(a,b) —* a and snd{(a,b) —* b.

Proof. We show the case for fst. Let a = S™ 0, b=S"0.
fst(a, b) — (let (u,v) = (5™ 0,S™ 0) in iter v u Az.z)
— iter (5™ 0) (S™0) Az.z —* S" 0 =a. O

Copying linearly. We can also copy natural numbers in this linear calculus. For
this, we define a function C': Nat —o Nat ® Nat that given a number 7 returns a
pair (7, n): C' = Ax.iter z (0,0) (A\z.let (a,b) = z in (Sa, Sb)).

Lemma 7. For any number i, C . —* (1, 7).

Proof. By induction on 7.
Co — iter 0 (0,0) (Az.let (a,b) = = in (Sa, Sb)) — (0, 0)
C (S'T10) = iter (S**10) (0,0) (Az.let (a,b) = x in (Sa, Sb))
— (Az.let (a,b) = = in (Sa, Sb))
(iter (S 0) (0,0) (A\z.let (a,b) = z in (Sa,Sh)))
—* (Az.let (a,b) = z in (Sa, Sb))(t, )
— 1let {(a,b) = (t,t) in (Sa,Sb) — (St, St) O

Tt is easy to apply this technique to other data structures (e.g. linear lists). Note
that we do not need iterative types for this (the standard typing of iterators is
sufficient). More interestingly, we will show in Section 5 that iterators will indeed
allow us to erase any closed term, and moreover copy any closed term.

Primitive Recursive Functions. System L can express the whole class of primitive
recursive functions. We have already shown we can project, and of course we have
composition. We now show how to encode a function h defined by primitive
recursion from f and g (see Section 2) using iter. First, assume h is defined by
the following, simpler scheme (it uses n only once in the second equation):

h(z,0) = f(x)
h(z,n +1) = g(x, h(z,n))

Given a function g : Nat —o Nat —o Nat, let ¢’ be the term:
Ay.Az.let (z1,22) = C z in gz1(yz2) : (Nat —o Nat) —o (Nat —o Nat)

then h(z,n) is defined by the term (iter n f ¢’)z : Nat, with f : Nat —o Nat.
Indeed, we can show by induction that (iter n f g’)z, where z and n are numbers,
reduces to the number h(z,n); we use Lemma 7 to copy numbers:
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(iter 0 f ¢')x — (f ) = h(z,0)
(iter (S"T10) f g') 2 —* (Let (21,22) = C z in gz1(yz2))
(iter (5" 0)  ¢)/92/]
—* let (z1,22) = (x,x) in gz1((iter (5™ 0) f ¢')z2)
— g x((iter (S™ 0) f ¢')x) = h(z,n + 1) by induction.
Now to encode the standard primitive recursive scheme, which has an extra n in
the last equation, all we need to do is copy n: h(x,n) = let (n1,n2) = C n in sz,
where s = iter ny f (Ay.Az.let (z1,22) = C z in gz1(y22)n1). Note that the
iterator in the encoding of h(x,n) uses an open function, but it will be closed
before reduction.

Beyond Primitive Recursion. Ackermann’s function is a standard example of a
non primitive recursive function:

ack(0,n) =Sn
ack(Sn,0) = ack(n,S0)
ack(Sn,Sm) = ack(n, ack(S n,m))

In a higher-order functional language, we have an alternative definition. Let
succ = Az.S z : Nat —o Nat, then ack(m,n) = a m n where a is the function
defined by:
a0 = succ Ag0 =g(S0)
a(Sn)=A(an) Ag(Sn)=g(Agn)

Lemma 8. Both definitions are equivalent: For all z,y : Nat, a x y = ack(x,y).

Proof. By induction on x, proving first by induction on n that if g = \y.ack(z,y)
then A g n = ack(S z,n). O

We can define ¢ and A in System L as follows:
a n = iter n succ A : Nat —o Nat Agn=iter (Sn) (S0)g: Nat
We show by induction that this encoding is correct:

— a0 = iter 0 succ A = succ
Ag0=iter (S0)(S0)g=g(S0)
— a (Sn) =iter (S* 0) succ A = A(iter n succ A) = A(a n)
A g (Sn)=iter (S(Sn)) (S0) g=g(iter (Sn) (S0) g) =g(Agn).
Then Ackermann’s function can be defined in System L as:
ack(m,n) = (iter m succ (Agu.iter (S u) (50) g)) n : Nat
The correctness of this encoding follows directly from the lemma above. Note
that iter (S u) (S 0) g cannot be typed in [16], because g is a free variable. We

allow building the term with the free variable g, but we do not allow reduction
until it is closed.

5 The Power of System L: System 7 Linearly

In this section we show how to compile System 7 programs into System L, i.e.
we show that System 7 and System L have the same computational power.
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Ezxplicit Erasing. In the linear A-calculus, we are not able to erase arguments.
However, terms are consumed by reduction. The idea of erasing by consuming is
not new, it is known as Solvability (see [5] for instance). Our goal in this section
is to give an analogous result that allows us to obtain a general form of erasing.

Definition 4 (Erasing). We define the following mutually recursive operations
which, respectively, erase and create a System L term. If T t: T, then E(t,T)
is defined as follows (where I = A\x.x):

E(t,Nat) =itert I 1] E(t,A® B) =1let (z,y) =t in E(x, A)E(y, B)
E(t,Bool) =cond t I ] E(t,A— B)=E(tM(A),B)

M(Nat) =0 M(A® B) = (M(A), M(B))

M(Bool) = true M(A — B) = \x.E(x, A)M(B)

Lemma 9. If ', t:T then:

1. w(E@,T)) =1v(t) and '+, E(t,T): A —o A.
2. M(T) is a closed System L term such that bp M(T): T

Proof. Simultaneous induction on 7. We show two cases:

— fv(&(t,A® B)) =fv(let (x,y) =t in E(x, A)E(y, B)) = fv(t). By induction:
x:Abp E(x,A): (C—-C)—o(C—-oC)andy: B}—l;é'(y,B):C’—OC'
thenz: A,y : B, E(x,A)E(y,B) : C —o C. Then
x Ay B}—gc‘:(tA(X) B): C — C, for any C.

R(M(A® B)) = W((M(A), M(B))) = @ by TH(2), and ¢ (M(A), M(B)) :
A® B by TH(2).

— fv(&(t,A —o B)) = fv(E(tM(A), B)) = fv(tM(A)) = fv(t) by IH (1 and 2).
Also, by TH(1) I' bz EtM(A), B) : C — C for any C, since - M(A) : A
by TH(2).
fv(M(A—oB)) = fv(Az.E(x, A)AM(B)) = & by IH(1 and 2). Also, -z M(A—o
B) : A — B because by TH(1) = : A b, E(z,A) : B — B and by TH(2)
. M(B): B. 0

Lemma 10. Ifz: Abst:T andbpv: A then: E(t,T)[v/z] = E(tv/z], T).
Proof. By induction on T, using the fact that . tfv/z] : T. O
Lemma 11 (Erasing Lemma). If.t: T (i.e. t closed) then E(t,T) —* I.
Proof. By induction on T, using Theorem 4:

E(t,Nat) =itert I T —*iter (S"0) I I —* 1T

E(t,Bool) =condt I [ —* I.

If T = A® B, then t —* (a,b) and by Theorem 1 and Lemma 4: -, a : A
and k. b : B. By induction, £(a, A) —* I and (b, B) —™* I, therefore
let (z,y) = (a,b) in E(x, A)E(y, B) —* I.

If T = A—o B then £(t,A — B) = £(tM(A), B) and by Lemma 9 M(A) is a
closed System L term of type A, thus by induction E(tM(A),B) —* I. O
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Ezxplicit Copying. We have shown how to duplicate numbers in Section 4, but
to simulate System 7 we need to be able to copy arbitrary terms. The previous
technique can be generalised to other data structures, but not to functions.
However, the iterator copies (closed) functions. Our aim now is to harness this.
We proceed with an example before giving the general principle. Suppose that
we want to write Az.(z,z). This term can be linearised: A\xy.(z,y). If we now
apply this term to two copies of the argument, we are done. Although we don’t
have the argument yet, we can write a System £ term which will create these
copies: Az.iter (5% 0) (Azy.(z,y)) (A\z.z2).

Lemma 12 (Duplication Lemma). Ift is a closed System L term, then there
is a System L term D such that Dt = (t,t).

Proof. Let D = Az.iter S(S 0) (A\zy.(z,y)) (A\x.zz) then
Dt — iter S(S0) (A\xy.(z,y)) (\z.xt)
—* (Az.at)((Az.at) Azy.(z,y))) —* (t, 1) O

This result also applies to numbers, so we have two different ways of copying
numbers in System L.

5.1 Compilation

We now put the previous ideas together to give a formal compilation of System
7T into System L.

Definition 5. System T types are translated into System L types using {-) de-
fined by:

(Nat) = Nat (Bool) = Bool

(A— B) =(A) = (B) (AxB)=(A4)®(B)
Ifr=x1:Th,...;xn: Ty then (I') = x1: (Th), ..., Tn: (Tn).

Definition 6 (Compilation). Let t be a System T term such that I' b1 t :
T. Its compilation into System L is defined as: [z1]...[x,]{t) where fv(t) =
{z1,...,2,}, n >0, we assume without loss of generality that the variables are

processed in lexicographic order, and (-}, [-]- are defined below. We abbreviate
iter (S™ 0) (Aw1 -+~ 2p.t) (Az.22) as CFr-"n ¢, and ([x]t)[y/x] as Ajt.

(z) =z
() = ()
(A\z.t) = Az.[z|(t), if = € fv(t)
= Ax.E(x, (A))(t), otherwise, where I' -7 t: A— B=T
(Lemma 1)
(0) =0
sH =5
(iter n u v) = iter (n) (u) (v)
(true) = true
(false) = false
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{cond n u v) = cond {n) (u) (v)

((t,u)) = ((t), (u))

(m1t) =let (z,y) = (t) in E(y,(B))z, where 'Fr t : Ax B=T
(Lemma 1)

(mat) = 1et (z,y) = (£) in E(z, (A))y, where T'br t: Ax B=T
(Lemma 1)

and [-]- is defined as:

ﬁ(s t) = S([=]t)

[z](Ay.t) = \y.[z]t
Cir*2 (A7 )(AT,u) e fu(t),z € fv(u)

[x](tu) =< ([z]t)u x € fv(t), s & fv(u)
t([x]u) x € fv(u),z & fv(t)
iter [x]n u v x € fv(n),x & fv(uw)
iter n [z]u v x & fv(nv),x € fv(u)
iter n u [z]v x & fv(nu), z € fv(v)

[z](iter n w v) = § C3"iter (AZ n) (AZ u)v € fv(n) Nfv(u),z & fv(v)
Cyvositer (A7 n) v (A7,v) x € fv(n) Niv(v),r & fv(u)
Cy>iter n (A7,u) (A7,v) x & fv(n),x € fv(u) Nfv(v)
Cyvrzesiter (A7 n) (AZ,u) (AZ,v) z € fv(n) Nfv(u) Nfv(v)

[z](cond n u v) follows the same structure as iter above, replacing iter by cond.

Cyrr2 (AL t, AL u), w € fu(t), x € fv(u)
[z](t,u) = < ([z]t,u),z € fv(t),x & fv(u)
(t, [x]u), z € fv(u), z & fv(t)

let (y,z) = [z]t inu x € fv(t),x & fv(u)
let (y,2) =t in [z]u x & fu(t), z € fv(u)
Civ*2(let (y,z) = A7 tin A7 u)

x € fu(t),z € fv(u)

[z](let (y,z) =tinu) =

where the variables x1, o and x3 above are assumed fresh.

As an example, we show the compilation of the combinators:
— {Az.x) =\
— (Axyz.az(yz)) = Avyz.iter 2 (A\z122.221(y22)) Aa.az
— (\ry.x) = My E(y, B)x

Lemma 13. Ift is a System T term, then:

1. fv([z1] - - - [zn]{E)) = fu(t).

2. [x1] - [zn](t) is a valid System L term (satisfying the constraints in Ta-
ble 1), if fv(t) = {x1,..., 20}
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Proof. The first part is by induction on ¢ using Lemma 9, and the second part
by induction on t using the first part. O

We will now prove that the compilation produces a typable term in System L.
For this we will need a lemma in which we will use the type system for System
L augmented with weakening and contraction rules for variables in a certain set
X. Typing judgements in this system will be denoted I' Fy+x t : T. We will
denote I'x the restriction of I" to the variables in X.

Lemma 14. If I'tr t: T and {z1,...,2,} Cfu(t) then

1. <I‘|fv(t)) |—L+fv(t) (t) : (T)

2. (F|fv(t)) Frix [x1]...[zn]{t): {T) implies
(F|fv(t)) Frox [@][za] .. [2a](t): (T) where X = fv(t)—{z1,..., 2.}, x € X,
X' =X —{z}.

Proof. By simultaneous induction on t. O

Corollary 1. If I'r t: T and fv(t) = {x1,...,zn} then
(F|fv(t)) Fr [331] . [$n]<t) (T)

We will now prove that we can simulate System 7 evaluations. First we prove a
substitution lemma.

Lemma 15 (Substitution). Let ¢t and w be System L terms such that fv(t) =
{z1,...,zp}, n > 1, and fv(w) = &, then

([za] - [wn] (@) (w) /1] —" [wa] - [wn] (tw/21])

Proof. By Lemma 13 (Part 1), fv({w)) = @, and z1 € fv([z1]...[z,]{t)). We
proceed by induction on t. O

Theorem 5 (Simulation). Let t be a System T program, then: t | u =
(t) — (u).

Proof. By induction on t | u. We show two cases:
Application. By induction: {(tu) = (t){u) —* {Az.t’){u). There are now two
cases:
If x € fv(t') then using Lemma 15:
(') u) = O[] () () — (2] ('))[(u) fa] —* (' u/a]) —* ()
Otherwise, using Lemmas 10 and 11:
(Az.t')(u) = (Az.E(x, A)(t'))(u) — (E((u), (A))(t')) — (t')
= (t'[u/a]) —* (v)
Projection. By induction and Lemmas 10 and 11:
(mt) = let (z,y) = () in E(y, (A))z —" et (z,y) = ((u,v)) in E(y, (A))z
= let (z,y) = ((u), {v)) in E(y, (A))x — E((v), (A))(u) —" (v) O
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Conclusions

We have shown how to build a powerful calculus starting from the (very weak in
terms of computational power) linear A-calculus, by adding Booleans, numbers
and linear iterators. We have seen that linear iterators can express much more
than primitive recursive functions: the system has the computational power of
System 7.

We have focused on the computational power of the linear calculus in this

paper; there are other interesting aspects that remain to be studied:

— By the Curry-Howard isomorphism, the results can also be expressed as a

property of the underlying logic (our translation from System 7 to System
L eliminates Weakening and Contraction rules).

Applications to category theory: It is well-known that a Cartesian closed
category (CCC) models the structure of the simply typed A-calculus (i.e., a
CCC is the internal language for the A-calculus [17,18]). The internal lan-
guage of a symmetric monoidal closed category (SMCC) is the linear -
calculus [20]. If we add a natural numbers object (NNO) to this category,
then this corresponds to adding natural numbers and an iterator to the cal-
culus. In this setting, a natural question arises : what is the correspondence
between CCC+NNO and SMCC+NNO?

Does the technique extend to other typed A-calculi, for instance the Calculus
of Inductive Constructions [22]?
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Abstract. The Hintikka-style modal logic approach to knowledge con-
tains a well-known defect of logical omniscience, i.e., the unrealistic fea-
ture that an agent knows all logical consequences of her assumptions. In
this paper, we suggest the following Logical Omniscience Test (LOT):
an epistemic system E is not logically omniscient if for any valid in E
knowledge assertion A of type ‘F' is known,’ there is a proof of F' in E,
the complexity of which is bounded by some polynomial in the length
of A. We show that the usual epistemic modal logics are logically omni-
scient (modulo some common complexity assumptions). We also apply
LOT to evidence-based knowledge systems, which, along with the usual
knowledge operator K;(F) (‘agent ¢ knows F’), contain evidence asser-
tions t: F' (‘t is a justification for F’). In evidence-based systems, the
evidence part is an appropriate extension of the Logic of Proofs LP,
which guarantees that the collection of evidence terms ¢ is rich enough
to match modal logic. We show that evidence-based knowledge systems
are logically omniscient w.r.t. the usual knowledge and are not logically
omniscient w.r.t. evidence-based knowledge.

1 Introduction

The modal logic approach to knowledge [25] contains a well-known defect of
logical omniscience, i.e., the unrealistic feature that an agent knows all logi-
cal consequences of her assumptions. In particular, a logically omniscient agent
who knows the rules of chess would also know whether White has a non-losing
strategy.

The logical omniscience sickness is a major obstacle in the way of applying
the logic of knowledge in Computer Science. For example, within the modal
logic of knowledge, an agent who knows the product of two primes also knows
both of those primes’, which makes this logic useless in analyzing cryptographic
protocols epistemically.

The logical omniscience problem, raised in [14,15,26,38,40], has been studied
extensively in logic, epistemology, game theory and economics, distributed sys-
tems, artificial intelligence, etc., in a large number of papers, including
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[1,9,13,14,15,16,22,23,27,33,36,37,41,42,44,45,46,47,48], and many others. Most
of them adjust epistemic models to avoid certain features of logical omniscience.

In this paper, we try a general approach based on proof complexity to define
and test the logical omniscience property of an epistemic system. This approach
was inspired by the Cook-Reckhow theory of proof complexity [11,43].

We see the essence of the logical omniscience problem in a nonconstructive
character of modal languages, which are able to symbolically represent knowledge
without providing any information about its origin. In a modal language, there
are valid knowledge assertions that do not have feasible justifications and hence
cannot be regarded valid in any practical sense. We view logical omniscience
rather as a syntactic and complexity issue. On the basis of this understanding,
we suggest the following test:

An epistemic system FE is not logically omniscient if for any valid in E
knowledge assertion A of type F' is known, there is a proof of F' in F, the
complexity of which is bounded by some polynomial in the length of A.

We show that the traditional epistemic modal logics do not pass this test and
hence are logically omniscient. This complies nicely with the intuition that led
to the recognition of the logical omniscience problem in the first place.

The aforementioned test suggests ways of building epistemic systems that are
not logically omniscient: one has to alter the syntax of knowledge assertions F' is
known in order to include more information about why F' is known. This added
information should be sufficient for recovering a certified justification, e.g. a
feasible proof, for F.

We show that recently introduced evidence-based knowledge systems from
[3,4,6,8] are not logically omniscient.

In Section 2, we formally introduce the Logical Omniscience Test (LOT). In
Section 3, we show that, according to LOT, the traditional epistemic modal
logics are logically omniscient. Then, in Section 4, we formulate the system LP,
which is a general purpose calculus of evidence terms, and show in Section 5
that LP as an epistemic system is not logically omniscient. Finally, in Section 6,
we extend these results to the multi-agent logics with common knowledge and
the corresponding evidence-based knowledge systems.

2 Logical Omniscience Test

Let L be a logical theory. According to Cook and Reckhow (cf. [11,43]), a proof
system for L is a polynomial-time computable function p: ¥* — L from the set
of strings in some alphabet, called proofs, onto the set of L-valid formulas. In
addition, we consider a measure of size for proofs, which is a function £: X* — IN,
and a measure of size for individual formulas | - |: Fmy — IN.

Logical Omniscience Test (Artemov, 2005). Let L be a theory capable
of expressing knowledge assertions ‘formula F is known,’ supplied with a proof
system p, a measure of size for proofs £, and a measure of size for individual
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formulas |-|. Theory L is not logically omniscient w.r.t. proof system p under
size measures £ and |-| if there exists a polynomial P such that for each valid in L
knowledge assertion A stating that ‘F' is known,’ formula F' has a proof D € X*
such that

D) < P(1A]) .

Note 1. This test has a proof system and measures of size for proofs and formulas
as parameters. With such a freedom, one should be careful when applying this
test to real epistemic systems. In particular, in this paper, we consider only
complexity measures that are commonly used in proof complexity for various
specific types of proofs.

In this paper, we mostly consider Hilbert-style proof systems. The size measures
commonly associated with them are

1. the number of formulas in a derivation, i.e., the number of proof steps,

2. the number of logical symbols in a derivation,

3. the bit size of a derivation, i.e., the number of symbols with the size of indices
of propositional variables, etc. taken into account. In other words, this is the
string length in the alphabet X*.

These are the three measures on which we will concentrate. If the size of a
proof £(D) is the number of symbols (counting or not counting indices), it seems
reasonable to use the same measure for the size of formulas: |F| = ¢(F). But
in case 1, i.e., when we only take into account the number of formulas, using
the same measure for the size of formulas would yield |F| = 1 for any single
formula F', which is not a fair measure. So, if the size of a proof is the number
of formulas, we will measure the size of individual formulas using number of
symbols (again with or without indices). This is the reason why, in general, we
need two different measures for proofs and formulas.

3 Modal Epistemic Logics Are Logically Omniscient

It is fairly easy to show that a modal logic, such as S4, is logically omniscient
under the bit size measure w.r.t. any proof system, modulo a common complexity
assumption. Consider S4 with the modality K.

Theorem 1. Consider any proof system p for S4. Let the size of a proof (a for-
mula) be the string length of that proof (that formula). Then S4 is logically
ommniscient unless PSPACE = NP.

Proof. Indeed, suppose S4 is not logically omniscient. So for every valid knowl-
edge assertion KF', formula F has a polynomial-size proof in the proof system p,
i.e., there exists a polynomial P such that for every knowledge assertion KF
provable in S4 there is a proof Dp of F with ¢(Dp) < P(JKF]).

Then we can construct an NP decision procedure for the validity problem
in S4. We have S4 G iff S4  KG. So to determine whether a formula G is
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valid, non-deterministically guess its polynomial-size proof in the proof system p.
Then, check that it is indeed a proof of G; this can be done in polynomial time
of the size of the proof (by definition of a proof system), which, in its turn, is a
polynomial in [KG| = |G| + 1.

On the other hand, it is well known that S4 is PSPACE-complete ([30]). Thus,
the existence of an NP-algorithm for S4 would ensure that PSPACE C NP, in
which case these two classes coincide. ad

If we restrict our attention to the Hilbert-style proofs, there are two more size
measures available: the number of proof steps and the number of logical symbols
in a derivation. For either of the two, one can show that S4 is logically omniscient
(modulo the same common complexity assumption).

Theorem 2. S4 is logically omniscient w.r.t. the Hilbert proof system with the
size of a proof being the number of formulas in it unless PSPACE = NP.

Proof. Again, we want to construct an NP algorithm for the decision problem
in S4. But it is not so easy to NP-guess the whole proof in this case. Although
there are only polynomially many formulas, still the proof can a priori be expo-
nentially long if the formulas are huge.

We will use unification and modified Robinson’s algorithm (see [12]) to do the
proof schematically.

Again, for an arbitrary formula G, non-deterministically guess the structure
of a Hilbert proof of G, i.e., for each of the polynomially many formulas, guess
whether it is an axiom, or a conclusion of a modus ponens rule, or a conclusion
of a necessitation rule. For each rule, also guess which of the other formulas
was(were) used as its premise(s); for each axiom, guess to which of the finitely
many axiom schemes it belongs. This gives us the structure of the derivation
tree, in fact, of the derivation dag because in Hilbert proofs, one formula can be
used in several rules.

Write each axiom used in the form of the corresponding axiom scheme using
variables over formulas (variables in different axioms must be distinct). Then,
starting from the axioms, we can restore the proof in a schematic way. Where
a necessitation rule needs to be used, just prefix the formula with K. A case
of modus ponens is more interesting. Suppose modus ponens is to be used on
schemes X — Y and Z. Then, unify X with Z using modified Robinson’s algo-
rithm from [12] and apply the resulting most general unifier (m.g.u.) to Y.

Eventually, at the root of the tree, we will obtain the most general form of
formulas that can be proved using derivations with this particular dag structure.
Unify this form with the formula G.

All unifications can be done in quadratic time of the size of all the formula dags
in the derivation dag; such is the complexity of modified Robinson’s algorithm.
Each axiom scheme at the beginning has a constant size, and the number of
axioms and rules is polynomial in |[KG/|; hence the whole unification procedure
is polynomial.

Again we were able to construct an NP decision algorithm under the assump-
tion that there is a polynomial-step Hilbert derivation. a
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So S4 turns out to be logically omniscient w.r.t. an arbitrary proof system under
the bit size measure and w.r.t. the Hilbert proofs under any commonly used
measure, provided, of course, that PSPACE # NP.

It is not hard to generalize this result to the epistemic logic S4,, of n knowledge
agents and the logic of common knowledge S4S . The argument is essentially the
same, only for S4S the effect of it not being logically omniscient would be even
more devastating: $45 is EXPTIME-complete (for n > 2) (see [23]).

Theorem 3. 1. S4,, is logically omniscient w.r.t. an arbitrary proof system
under the bit size measure unless PSPACE = NP.
2. S4, is logically omniscient w.r.t. the Hilbert proof system with the size of a
proof being the number of formulas in it unless PSPACE = NP.
3. S4S is logically omniscient w.r.t. an arbitrary proof system under the bit size
measure unless EXPTIME = NP.
4. S4S is logically omniscient w.r.t. the Hilbert proof system with the size of a
proof being the number of formulas in it unless EXPTIME = NP.

Similar results hold for epistemic logics that are co-NP-complete, e.g. S5. Re-
peating the argument for them would yield NP = co-NP.

4 Logic of Evidence-Based Knowledge LP

The system LP was originally introduced in [2] (cf. [3]) as a logic of formal math-
ematical proofs. Subsequently, in [4,5,6,7,8,17,19], LP has been used as a general
purpose calculus of evidence, which has helped to incorporate justification into
formal epistemology, thus meeting a long standing demand in this area.

The issue of having a justification formally presented in the logic of knowl-
edge has been discussed widely in mainstream epistemology, as well as in Com-
puter Science communities [10,20,21,24,31,32,34,39]. This problem can be traced
back to Plato who defined knowledge as Justified True Belief (JTB): despite
well-known criticism, JTB specification is considered a necessary condition for
possessing knowledge. The traditional Hintikka-style modal theory of knowledge
does not contain justification and hence has some well-known deficiencies: it does
not reflect awareness, agents are logically omniscient, the traditional common
knowledge operator effectively ruins logics of knowledge proof-theoretically and
substantially increases complexity. Most prominently, however, the traditional
modal logic of knowledge lacked expressive tools for discussing evidence and
analyzing the reasons for knowledge. According to Hintikka’s traditional modal
logic of knowledge, an agent ¢ knows F' iff F' holds in all situations that ¢ con-
siders possible. This approach leaves doors open for a wide range of speculative
‘knowledge’: occasional, coincidental, not recognizable, etc. The evidence-based
approach views knowledge through the prism of justification: the new epistemic
atoms here are of the form ¢: F, “F is known for the reason ¢.” Naturally, this
approach required a special theory of justification and the Logic of Proofs re-
vealed the basic structure of evidence. In order to match the expressive power
of modal logic, it suffices to have only three manageable operations on evidence:
application, union, and evidence checker.



140 S. Artemov and R. Kuznets

4.1 Axiom System

Evidence terms ¢ are built from evidence constants ¢; and evidence variables x;

4'7

by means of three operations: unary ‘I’ and binary ‘+’ and ‘-’
to=c o | Ve t-t]t+1

The axioms of LPy are obtained by adding the following schemes to a finite set
of axiom schemes of classical propositional logic:

LPl s:(F—-G)— (t:F — (s-t):G) (application)
LP2 t:F —t:t:F (evidence checker)
LP3 s:F — (s+t):F, t:F— (s+t):F (union)
LP4 ¢:F — F (reflexivity)

The only rule of LP( is modus ponens. The usual way to define the full LP is to
add to LPy the rule of axiom necessitation:

If A is a propositional axiom or one of LP1-4 and c is a constant, infer c: A.

The system LP behaves as a normal propositional logic. In particular, LP is
closed under substitutions and enjoys the deduction theorem. The standard se-
mantics of proofs for LP considers variables x; as unspecified proofs, and con-
stants ¢; as unanalyzed proofs of “elementary facts,” i.e., logical axioms.

A constant specification CS is a set of LP-formulas of form c: A, where c is
an evidence constant, A is an axiom. Each LP-derivation generates a constant
specification that consists of the formulas of form c: A introduced by the axiom
necessitation rule.

A constant specification is called injective if no evidence constant is assigned
to two different axioms. In such specifications, each constant carries complete
information about the axiom the proof of which it represents.

The mazimal constant specification is that in which each evidence constant
is assigned to every axiom. This corresponds to the situation where there is no
restriction on the use of evidence constants in the axiom necessitation rule.

We define LP¢s as the result of adding constant specification CS as new axioms
to LPg. LP is LP¢s for the maximal constant specification CS.

At first glance, LP looks like an explicit version of the modal logic S4 with basic
modal axioms replaced by their explicit counterparts. However, some pieces seem
to be missing, e.g. the modal necessitation rule F FF = F KF'. The following
lemma shows that LP enjoys a clear constructive version of the necessitation
rule.

Lifting Lemma 1. ([2,3]) If LP I F, then there exists a +-free ground® evi-
dence term t such that LP - 1¢:F.

In fact, the analogy between LP and S4 can be extended to its maximal degree.
We define a forgetful mapping as (¢ : F)° = K(F°). The following realization
theorem shows that S4 is the forgetful projection of LP.

2 Ground here means that no evidence variable occurs within it.
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Theorem 4 (Realization Theorem). ([2,3])

1. If LPF G, then S4+ G°.
2. IfSA+ H, then there exists an LP-formula B (called a realization of H ) such
that LP - B and B° = H.

In particular, the Realization Theorem shows that each occurrence of epistemic
modality K in a modal epistemic principle H can be replaced by some evidence
term, thus extracting the explicit meaning of H. Moreover, it is possible to
recover the evidence terms in a Skolem style, namely, by realizing negative oc-
currences of modality by evidence variables only. Furthermore, any S4-theorem
can be realized using injective constant specifications only.

4.2 Epistemic Semantics of Evidence-Based Knowledge

Epistemic semantics for LP was introduced by Fitting in [17,19] based on earlier
work by Mkrtychev ([35]). Fitting semantics was extended to evidence-based
systems with both knowledge modalities K;F' and evidence assertions t : F
in [4,6,7,8].

A Fitting model for LP is a quadruple M = (W, R,E,V), where (W, R, V) is
the usual S4 Kripke model and £ is an evidence function defined as follows.

Definition 1. A possible evidence function £&: W x Tm — 2F™ maps worlds and
terms to sets of formulas. An evidence function is a possible evidence function
E:W x Tm — 2F™ that satisfies the following conditions:

1. Monotonicity: wRu implies £(w,t) C E(u,t)

2. Closure:
— Application: (F — G) € E(w, s) and F € E(w,t) implies G € E(w, s - t)
— Evidence Checker: F € E(w,t) implies t: F € E(w,!t)
— Union: &(w, s) U&(w,t) C E(w,s+1)

For a given constant specification CS, a CS-evidence function is an evidence
function that respects the constant specification CS, i.e., c: A € CS implies
A € E(w,c). When speaking about CS-evidence functions for the mazimal CS
(case of LP), we will omit prefix CS and simply call them evidence functions.

Forcing relation M, w IF F' is defined by induction on F'.

1. Mywlr P iff V(w,P) =1 for propositional variables P;
2. boolean connectives are classical;
3. Mwlks:G iff G e &(w,s) and M,ul- G for all wRu.

Again, when speaking about models for LP (case of the maximal CS), we will
omit prefix CS and will simply call them models (or F-models).

As was shown in [17,19], LP¢s is sound and complete with respect to CS-
models. Mkrtychev models (M-models) are single-world Fitting models. As was
shown in [35], LP¢s is sound and complete with respect to M-models as well.

We are mostly interested in knowledge assertions t: F'. A special calculus for
such formulas was suggested in [28].
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Definition 2. The axioms of logic rLP¢cs are exactly the set CS. The rules are

t:F s:F t:F s:(F—=G) t:F
1t:t: F (s+t):F (s+t):F (s-t):G

Theorem 5. ([28]) LPes F¢:F  iff rLPestt:F.

We will again omit subscript CS when discussing the maximal constant specifi-
cation.

5 Evidence-Based Knowledge Is Not Logically
Omniscient

Now we are ready to show that evidence-based knowledge avoids logical omni-
science. The first question we have to settle is what constitutes a ‘knowledge
assertion’ here. Apparently, the straightforward answer ¢ : F', generally speak-
ing, is not satisfactory since both ¢ and F' may contain evidence constants, the
meaning of which is given only in the corresponding constant specification, thus
the latter should be a legitimate part of the input.

Definition 3. A comprehensive knowledge assertion has form
/\ CS —t:F |

where CS is a finite injective constant specification that specifies all the constants
occurring in t.

Each LP-derivation only uses the axiom necessitation rule finitely many times.
Hence, each derivation of F' can be turned into an LPg-derivation of A CS — F.

Lemma 2. LP+t:F iff LPo - ACS —t:F iff rLPcst t:F for some
finite constant specification CS.

In this section we consider all three proof complexity measures: number of for-
mulas, length, and bit size. In all three cases we show that LP is not logically
omniscient. In fact, for the number of lines measure we are able to get a stronger
result: LP has polynomial-step proofs of F' even in the length of t: F', i.e., without
taking into account constant specifications. For the sake of technical convenience,
we begin with this result.

5.1 Number of Formulas in the Proof

Throughout this subsection, the size of a derivation £(D) is the number of formu-
las in the derivation. Moreover, we allow here arbitrary constant specifications,
not necessarily injective.

Theorem 6. LP is not logically omniscient w.r.t. the Hilbert proof system, with
the size of a proof being the number of formulas it contains.
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Proof. We show that for each valid knowledge assertion t: F' there is a Hilbert-
style derivation of F' that makes a linear number of steps. We will show that
actually 3|¢| + 2 steps is enough, where |¢| is the number of symbols in t.

Indeed, since LP = ¢: F', by Theorem 5 we have rLP F ¢: F. It can be easily
seen that a derivation of any formula ¢: F' in rLP requires at most |t| steps since
each rule increases the size of the outer term by at least 1.

Each axiom of rLP is an instance of an axiom necessitation rule of LP. Each rule
of rLP can be emulated in LP by writing the corresponding axiom (LP1 for the
--rule, LP2 for the !-rule, or LP3 for the +-rule) and by using modus ponens once
for each of the second and the third cases or twice for the first case. Thus each
step of the rLP-derivation is translated as two or three steps of the corresponding
LP-derivation. Finally, to derive F' from t¢: F' we need to add two formulas: LP4-
axiom t : F — F and formula F by modus ponens. Hence we need at most
3|t| 4+ 2 steps in this Hilbert-style derivation of F'. O

The lower bound on the number of steps in the derivation is also encoded by
evidence terms. But here we cannot take an arbitrary term ¢ such that LP - ¢: F.
If evidence t corresponds to a very inefficient way of showing validity of F', it
would be possible to significantly shorten it. But an efficient evidence term ¢
does give a lower bound on the derivation of F'. In what follows, by f(¢) we mean
the size of the syntactic dag for ¢, i.e., the number of subterms in .

Theorem 7. For a given F', let t be the term smallest in dag-size among all the
terms such that LP & t: F. Let D be the shortest Hilbert-style proof of F. Then
the number of steps in D is at least half the number of subterms in t:

(D) > (1) -
Proof. Let D be a derivation of F'; minimal in the number of steps N = ¢(D). By
Lifting Lemma 1, there exists a +-free ground term ¢’ such that LP - ¢': F. The
structure of the derivation tree of D is almost identical to that of the syntactic
tree of #. The only difference is due to the fact that an axiom necessitation
rule ¢: A in a leaf of a derivation tree corresponds to two nodes in the syntactic
tree: for c and for ! c. But we are interested in the dag sizes of both. Dag structures
may have further differences if one evidence constant was used in D for several
axiom necessitation instances. This would further decrease the size of the dag
for t'. Hence, for the dag-smallest term ¢ we have

1,1
UD) = () = 1) - 0

Combining the results of Theorems 6 and 7 we obtain the following

Corollary 1. Let t be the dag-smallest term such that LP - t:F. Let D be the
shortest Hilbert-style proof of F'. Then

1

o 1) < U(D) < 3ft| +2 .
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Remark 1. Although we were able to obtain both the lower and the upper bound
on the size of the derivation, these bounds are not tight as the tree-size (number
of symbols) and the dag-size (number of subterms) can differ exponentially.
Indeed, consider a sequence {t,,} of terms such that t; = ¢ and t,,41 = t,, - tn.
Then |t,,| = 2f(tn) — 1.

5.2 Length and Bit Size of Proofs

Let now £(D) stand for either the number of symbols in D or the number of
bits in D. Accordingly, let |F'| = ¢(F'). We will also assume that constant spec-
ifications are injective. This does not limit the scope of LP, since the principal
Realization Theorem 4 is established in [2,3] for injective constant specifications
as well.

Theorem 8. Let ACS — t: F be a comprehensive knowledge assertion valid
in LPg. Then there exist a polynomial P and a Hilbert-style LP¢s-derivation D
of F' such that

UD) < P(’/\CS—> t:FD .

Proof. The knowledge assertion ACS — t: F is valid, hence rLP¢s - t: F by
Lemma 2. A derivation in rLP¢s will again consist of at most |¢| steps; only here
we know exactly which axioms were used in the leaves because of injectivity
of CS.

Each formula in this derivation has form s:G where s is a subterm of ¢; let us
call these G’s evidenced formulas. We claim that the size of evidenced formulas,
|G|, is bounded by ¢(CS) + [t|?. Indeed, the rules for ‘+’ do not change the
evidenced formula. The rule for ‘-’ goes from evidenced formulas A — B and A
to evidenced formula B, which is smaller than A — B. The only rule that does
increase the size of the evidenced formula is the rule for ‘I’: it yields s: G instead
of G. Such an increase is by |s| < |¢t| and the number of l-rules is also bounded
by |t].

Therefore the rLP¢s-derivation has at most |¢| formulas of size at most £(CS)+
[t|* + |t| each. It is clear that the size of the whole derivation is polynomial
in [ANCS — t:F|.

As before, we convert an rLPcs-derivation into an LPcg-derivation as de-
scribed in the proof of Theorem 6. Evidently, the additional LP-axioms and
intermediate results of modus ponens for ‘-’ only yield a polynomial growth of
the derivation size.

Finally, we append the LP¢cg-derivation with ¢: ' — F' and F'. The resulting
derivation of F' is polynomial in |ACS — t:F|. O

6 Combining Implicit and Evidence-Based Knowledge

In this section we will extend the Logical Omniscience Test to modal epistemic
systems with justifications [4,6,7,8] and show that these systems are logically
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omniscient w.r.t. the usual (implicit) knowledge, but remain non logically om-
niscient w.r.t. evidence-based knowledge.

Logic of knowledge with justification S4LP 3 was introduced in [6,7,8]. Along
with the usual modality of (implicit) knowledge KF' (‘F is known’), this system
contains evidence-based knowledge assertions ¢: F' (‘F is known for a reason t’)
represented by an LP-style module. S4LP was shown in [6,18] to be sound and
complete with respect to F-models, where modality is given the standard Kripke
semantics.

In a more general setting, logics S4,,LP of evidence-based common knowledge
were introduced in [4] to model multiple agents that all agree with the same set
of explicit reasons. Its language contains n knowledge modalities K; along with
t : F' constructs for the same set of evidence terms as in LP. The axioms and
rules of S4,,LP are as follows:

finitely many propositional axiom schemes and modus ponens rule,
standard S4-axioms with necessitation rule for each modality Kj,
axioms LP1-LP4 with the axiom necessitation rule,

Connecting principle ¢: F' — K, F for each modality K;.

kel

The system S4LP is S4,,LP for n = 1.

Fitting-style models for S4,LP were introduced in [4]. Let W be a non-empty
set of worlds. Let R, Ry, ..., R, be reflexive and transitive binary relations on W
with R 2 R;, i = 1,...,n. Let £ be an evidence function satisfying all the
conditions from the definition of F-models, where Monotonicity is formulated
with respect to accessibility relation R and constant specification is taken to
be the maximal for S4,LP. Let V be a valuation in the usual modal sense.
An S4,LP-model is a tuple M = (W, R, Ry,...,R,,&E,V) with forcing relation
defined as follows:

1. MyjwlF P iff V(w,P) =1 for propositional variables P,
2. boolean connectives are classical,

3. MywlFK,G iff M,ulF G for all wR;u.

4 MywlFs:G it G e &(w,s) and M, ulF G for all wRu.

As was shown in [4], S4,LP is sound and complete with respect to the models
described above.

In S4,,LP, we also have two kinds of knowledge assertions: implicit K;F and
evidence-based ¢: F.

Theorem 9. S4,,LP is logically omniscient with respect to usual knowledge as-
sertions (unless PSPACE # NP) and is not logically omniscient with respect to
evidence-based knowledge assertions.

Proof. Without loss of generality, we will give a proof for n = 1, i.e., for S4LP.

1. Implicit knowledge is logically omniscient in the same sense as S4 was shown
to be in Theorems 1 and 2. The logic S4LP was shown to be PSPACE-complete

3 Tt was called LPS4 in [6].
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in [29]. It is quite evident that S4LP + F iff S4ALP + KF. Hence the proof of
Theorem 1 remains intact for S4LP and implicit knowledge in S4LP is logically
omniscient w.r.t. an arbitrary proof system under the bit size measure.

2. Consider the number of formulas in a Hilbert-style proof as the measure of
its size. We show how to adapt the proof of Theorem 2 to S4LP. In addition to
axioms, modus ponens and necessitation rules, S4LP-derivations also may have
axiom necessitation rules c: A. For these, we need to guess which of the evidence
constants ¢ occurring in KF are introduced and to which of the axiom schemes
those A’s belong. Also, for axioms we may need to use variables over evidence
terms and unify over them. These are all the changes needed for the proof, and
thus implicit knowledge in S4LP is logically omniscient w.r.t. the number of
formulas in Hilbert proofs.

3. Evidence-based knowledge is not logically omniscient. The primary tool we
used in Theorem 6 was N. Krupski’s calculus rLP. We need to develop a similar
tool for S4LP. It turns out that the calculus in the language of S4LP with the
same rules as rLP suffices.

Definition 4. Let rS4LP be the logic in the language of SALP with the same set
of rules as rLP and with the same mazximal constant specification as the set of
axioms.

Lemma 3. S4LP - ¢t:F  iff rS4LP ¢t F

Proof. The original proof from [28] remains almost intact. The ‘if’ part is trivial.
For the ‘only if’ part, it is sufficient to use the minimal evidence function in a
single-world F-model instead of one in an M-model as in [28] (see also [29]). O

Now we can take the proof of Theorem 6 word for word, replacing all instances
of LP by S4LP and rLP by rS4LP. Thus explicit knowledge in S4LP is not logically
omniscient w.r.t. the number of formulas in Hilbert proofs.

4. Similarly, we can define comprehensive knowledge assertions and prove that
S4LP is not logically omniscient w.r.t. comprehensive knowledge assertions and
Hilbert proofs measured by the number of symbols or number of bits in the proof
along the lines of Theorem 8. O

7 Conclusions

We introduced the Logical Omniscience Test for epistemic systems on the basis
of proof complexity considerations that were inspired by Cook and Reckhow the-
ory (cf. [11,43]). This test distinguishes the traditional Hintikka-style epistemic
modal systems from evidence-based knowledge systems. We show that epistemic
systems are logically omniscient with respect to the usual (implicit) knowledge
represented by modal statements K, F' (i-th agent knows F') whereas none is log-
ically omniscient with respect to evidence-based knowledge assertions ¢: F' (F is
known for a reason t).

One has to be careful when applying the Logical Omniscience Test. One could
engineer artificial systems to pass the test by throwing out knowledge assertions
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from a natural epistemic logic. However, comparing modal epistemic logics with
evidence-based systems is fair since, by the Realization Theorem, every knowl-
edge assertion in the former has a representative in the latter. Hence logics of
evidence-based knowledge have rich and representative systems of knowledge
assertions, both implicit and explicit.

One could try another approach to defining and testing logical omniscience
in the spirit of general algorithmic complexity. Consider the following Strong
Logical Omniscience Test (SLOT): an epistemic system E is not logically om-
niscient if there is a decision procedure for knowledge assertions A in FE, the
time complexity of which is bounded by a polynomial in the length of A. It
is obvious that evidence-based knowledge systems are SLOT-logically omni-
scient w.r.t. the usual implicit knowledge (modulo common complexity assump-
tions). Furthermore, these systems are not SLOT-logically omniscient w.r.t. the
evidence-based knowledge given by +-free terms, i.e., on comprehensive knowl-
edge assertions \ CS — t: F', where t is +-free. Note that by the Lifting Lemma 1,
for any valid formula F', there is a +-free term ¢ such that ¢: F' holds. Unfortu-
nately, the page limit of this paper does not allow us to provide any more details
here.
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Abstract. In a previous work we introduced Dual Light Affine Logic
(DLAL) ([BT04]) as a variant of Light Linear Logic suitable for guaran-
teeing complexity properties on lambda-calculus terms: all typable terms
can be evaluated in polynomial time and all Ptime functions can be
represented. In the present work we address the problem of typing lamb-
da-terms in second-order DLAL. For that we give a procedure which,
starting with a term typed in system F, finds all possible ways to dec-
orate it into a DLAL typed term. We show that our procedure can be
run in time polynomial in the size of the original Church typed system
F term.

1 Introduction

Several works have studied programming languages with intrinsic computational
complexity properties. This line of research, Implicit computational complexity
(ICC), is motivated both by the perspective of automated complexity analysis,
and by foundational goals, in particular to give natural characterizations of com-
plexity classes, like Ptime or Pspace. Different calculi have been used for this pur-
pose coming from primitive recursion, lambda-calculus, rewriting systems (e.g.
[BC92, MMO00, LM93])... A convenient way to see these systems is in general
to describe them as a subset of programs of a larger language satisfying certain
criteria: for instance primitive recursive programs satisfying safe/ramified recur-
sion conditions, rewriting systems admitting a termination ordering and quasi
interpretation, etc. ..

Inference. To use such ICC systems for programming purpose it is natural
to wish to automatize the verification of the criterion. This way the user could
stick to a simple programming language and the compiler would check whether
the program satisfies the criterion, in which case a complexity property would
be guaranteed.
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In general this decision procedure involves finding a certain witness, like a
type, a proof or a termination ordering. Depending on the system this witness
might be useful to provide more precise information, like an actual bound on the
running time, or a suitable strategy to evaluate the program. It might be used
as a certificate guaranteeing a particular quantitative property of the program.

Light linear logic. In the present work we consider the approach of Light
linear logic (LLL) ([Gir98]), a variant of Linear logic which characterizes poly-
nomial time computation, within the proofs-as-programs correspondence. It in-
cludes higher-order and polymorphism, and can be extended to a naive set the-
ory ([Ter04a]), in which the provably total functions correspond to the class of
polynomial time functions.

The original formulation of LLL by Girard was quite complicated, but a first
simplification was given by Asperti with Light Affine Logic (LAL) ([AR02]).
Both systems have two modalities (one more than Linear logic) to control dupli-
cation. There is a forgetful map to system F terms (polymorphic types) obtained
by erasing some information (modalities) in types; if an LAL typed term ¢ is
mapped to an F-typed term M we also say that t is a decoration of M.

So an LAL program can be understood as a system F program, together with
a typing guarantee that it can be evaluated in polynomial time. As system F is
a reference system for the study of polymorphically typed functional languages
and has been extensively studied, this seems to offer a solid basis to LAL.

However LAL itself is still difficult to handle and following the previous idea
for the application of ICC methods, we would prefer to use plain lambda-calculus
as a front-end language, without having to worry about the handling of modal-
ities, and instead to delegate the LAL typing part to a type inference engine.
The study of this approach was started in [Bai02]. For it to be fully manageable
however several conditions should be fulfilled:

1. a suitable way to execute the lambda-terms with the expected complexity
bound,

2. an efficient type inference,

3. a typed language which is expressive enough so that a reasonable range of
programs is accepted.

The language LAL presents some drawback for the first point, because the
LAL typed terms need to be evaluated with a specific graph syntax, proof-nets,
in order to satisfy the polynomial bound, and plain beta reduction can lead
to exponential blow-up. In a previous work ([BT04]) we addressed this issue
by defining a subsystem of LAL, called Dual Light Affine Logic (DLAL). It is
defined with both linear and non-linear function types. It is complete for Ptime
just as LAL and its main advantage is that it is also Ptime sound w.r.t. beta
reduction: a DLAL term admits a bound on the length of all its beta reduction
sequences. Hence DLAL stands as a reasonable substitute for plain LAL for
typing issues.
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Concerning point 2, as type inference for system F is undecidable ([Wel99])
we don’t try to give a full-fledged type inference algorithm from untyped terms.
Instead, to separate the polymorphic part issue from the proper DL AL part one,
we assume the initial program is already typed in F. Either the system F typing
work is left to the user, or one could use a partial algorithm for system F typing
for this preliminary phase.

So the contribution of the present work is to define an efficient algorithm to
decide if a system F term can be decorated in a DLAL typed term. This was
actually one of the original motivations for defining DLAL. We show here that
decoration can be performed in polynomial time. This is obtained by taking
advantage of intuitions coming from proof-nets, but it is presented in a standard
form with a first phase consisting in generating constraints expressing typability
and a second phase for constraints solving. One difficulty is that the initial
presentation of the constraints involves disjunctions of linear constraints, for
which there is no obvious Ptime bound. Hence we provide a specific resolution
strategy.

The complete algorithm is already implemented in ML, in a way that follows
closely the specification given in the article. It is modular and usable with any
linear constraints solver. The code is commented, and available for public down-
load (Section 6). With this program one might thus write terms in system F
and verify if they are Ptime and obtain a time upper bound. It should in par-
ticular be useful to study further properties of DLAL and to experiment with
reasonable size programs.

The point 3 stressed previously about expressivity of the system remains an
issue which should be explored further. Indeed the DL AL typing discipline will
in particular rule out some nested iterations which might in fact be harmless for
Ptime complexity. This is related to the line of work on the study of intensional
aspects of Implicit computational complexity ([MMO00, Hof03]).

However it might be possible to consider some combination of DLAL with
other systems which could allow for more flexibility, and we think a better un-
derstanding of DLAL and in particular of its type inference, is a necessary step
in that direction.

Related work. Inference problems have been studied for several ICC systems
(e.g. [Ama05], [HJ03]). Elementary linear logic (EAL, [Gir98, DJ03]) in partic-
ular is another variant of Linear logic which characterizes Kalmar elementary
time and has applications to optimal reduction. Type inference for propositional
EAL (without second-order) has been studied in [CM01],|CRAR03],[CDLRdR05]
and [BT05] which gives a polynomial time procedure. Type inference for LAL
was also investigated, in [Bai02, Bai04]. To our knowledge the present algorithm
is however the first one for dealing with polymorphic types in a EAL-related
system, and also the first one to infer light types in polynomial time.

Due to space constraints some proofs are omitted in this paper, but can be
found in [ABTO06].
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2 From System F to DLAL

The language LF of system F types is given by:
T,U:=a|T—-U|VaT.

We assume that a countable set of term variables 7,37, 27, ... is given for

each type T. The terms of system F are built as follows (here we write M7T to
indicate that the term M has type T'):

I'T ()\xT.MU)T*)U ((MTHU)NT)U (Aa.MU)Va'U ((MVa.U)T)U[T/a]

with the proviso that when building a term Aa.MY, o may not occur free in the
types of free term variables of M (the eigenvariable condition). The set of free
variables of M is denoted F'V (M).

It is well known that there is no sensible resource bound (i.e. time/space) on
the execution of system F terms in general. On the other hand, we are practically
interested in those terms which can be executed in polynomial time. Since the
class P of such terms is not recursively enumerable (as can be easily shown by
reduction of the complement of Hilbert’s 10th problem), we are naturally led to
the study of sufficiently large subclasses of P. The system DLAL gives such a
class in a purely type-theoretic way.

The language Lprar of DLAL types is given by:

AB:=a|A—-oB|A= B|§4|Va.A.

We note §°A = A and §*t1A = §§*A. The erasure map (.)~ from Lprar to
Lp is defined by: (§4)" = A-, (A—B) =(A=B) =A — B, and
(.)” commutes with the other connectives. We say A € Lpray is a decoration
of Te Lpift A= =T.

A declaration is a pair of the form z7 : B with B~ = T. It is often written
as x : B for simplicity. A judgement is of the form I'; A+ M : A, where M is
a system F term, A € Lprar and I' and A are disjoint sets of declarations.
When A consists of x1 : Ay,...,z, : Apn, §A denotes z1 : §A1,..., 2, : §A,.
The type assignment rules are given on Figure 1. Here, we assume that the
substitution M[N/z] used in (§ e) is capture-free. Namely, no free type variable
a occurring in N is bound in M[N/z]. We write I'; A Fprar M : A if the
judgement I'; A+ M : A is derivable.

An example of concrete program typable in DLAL is given in Section 6.

Recall that binary words, in {0, 1}*, can be given in system F the type:

Wr =Va.(a —a) = (a—a) = (a—a).
A corresponding type in DLAL, containing the same terms, is given by:
Wprar =Vo.(aa o a) = (a o a) = §(a —oa) .
The depth d(A) of a DLAL type A is defined by:

d(a) =0, d(A — B) = max(d(A),d(B)),  d(Va.B) = d(B),
d(§A) = d(A) + 1, d(A = B) = maz(d(A) + 1,d(B)).
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cxd ARz A (1d)
izt A AFM:B (o) THAFEM:A—~B DiAsrN:A
AR A M:A—B I, o Ay, Ay - (M)N : B (—oe)
vt LA ARM:B (oi [AFM:A=B 2:CHN:4 .
I'AFxz? M:A=B I'z:C;A+ (M)N : B (=) ()
In;AEM:A x1:Ayxet AT AFM B
I, I A1, Ao M A (Weal) x: AT AR Mlx/x1,x/x2] : B (Cntr)
s DVAEM: A I1;AiEN:§A Io;x:8A, A M: B
risar miga GO Iy, Iy Ay, A - M[N/a] : B (§e)
IARM: A I'y A M :Va.A
rAF AaM :vaa (70 (F) FAE (DB ABja] O

(*) z : C can be absent.
(**) a does not occur free in I, A.

Fig. 1. Typing system F terms in DLAL

A type A is said to be I1; if it does not contain a negative occurrence of V; like
for instance Wprar.
The fundamental properties of DLAL are the following [BT04]:

Theorem 1

1. For every function f : {0,1}* — {0,1}* in DTIME[n¥], there ezists a
closed term M of type Wprar —o §*Wprar with d = O(logk) representing
7.

2. Let M be a closed term of system F that has a IIy type A in DLAL. Then
M can be normalized in O(\M|2d) steps by B-reduction, where d = d(A) and
| M| is the structural size of M. Moreover, the size of any intermediary term

occuring in normalization is also bounded by O(|M\2d).

Although DL AL does not capture all Ptime algorithms P, the result 1 guarantees
that DLAL is at least expressive enough to represent all Ptime functions. In fact,
DLAL is as expressive as LAL even at the level of algorithms, because there
exists a generic translation from LAL to DLAL given by:

(1A)? =Va.((A° = a) — a), (.)° commutes with other connectives than .

See [Ter04b] for details.

The result 2 on the other hand implies that if we ignore the embedded types
occurring in M, the normal form of M can be computed in polynomial time (by
ordinary (-reduction; that is the difference from LAL).

Now, let MWr=WF be a system F typed term and suppose that we know
that it has a DLAL type Wprar, —o §%Wprar for some d > 0. Then, by the
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consequence of the above theorem, we know that the term M is Ptime. In fact,
given a binary word w € {0,1}*, consider its Church coding w of type Wprar.
Then we have that (M)w has type §Wprar, and can thus be evaluated in
O(\w\QdH) steps. Thus by assigning a DLAL type to a given system F term, one
can statically verify a polynomial time bound for its execution.

In order to use DL AL for resource verification of system F terms, we address
the following problem:

Problem 2 (DLAL typing). Given a closed term M7T of system F, determine if
there is a decoration A of T such that Fprar M : A.

(Here the closedness assumption is only for readability.)
In the sequel, we show that there is a polynomial time algorithm for solving
the DLAL typing problem.

3 Characterizing DLAL Typability

3.1 Pseudo-terms

To address the DLAL typing problem, it is convenient to introduce an inter-
mediary syntax which is more informative than system F terms (but not more
informative than DLAL derivations themselves).

First we decompose A = B into !A — B. The language Lprar« of DLALx
types is given by:

Av=a|D—oA|Va.A|§A, Du=A|lA.

There is a natural map (.)* from Lprar to Lprarns such that (A = B)* =
IA* — B* and commutes with the other operations. The erasure map (.)~ from
Lprar« to Lr can be defined as before. A DLAL% type is called a bang type
if it is of the form !A, and otherwise called a linear type. In the sequel, A, B,C
stand for linear types, and D for either bang or linear types.

We assume there is a countable set of term variables z, 3P, 2P, ... for each
D € Lprar« The pseudo-terms are defined by the following grammar:

tous=al | el .t | (u | Aat | (1)A | §t | §t,

where A is a linear type and D is an arbitrary one. The idea is that § corresponds
to the main door of a §-box (or a !-box) in proof-nets ([Gir87, AR02]) while §
corresponds to auxiliary doors. But note that there is no information in the
pseudo-terms to link occurrences of § and § corresponding to the same box, nor
distinction between §-boxes and !-boxes.

There is a natural erasure map from pseudo-terms to system F terms, which we
will also denote by (.)~, consisting in removing all occurrences of §, §, replacing
2P with P and (t)A with (t)A~. When ¢t~ = M, t is called a decoration of
M.

For our purpose, it is sufficient to consider the class of regular pseudo-terms,
given by:

to=8"u, w==2z" | Pt | ()] Aat| (t)A,
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where m is an arbitrary value in Z and §™u is §---§u (resp. §---§u) with m
(resp. —m) occurrences of § (resp. §) if m > 0 (resp. m < 0). So a pseudo-term
is regular if and only if it does not contain any subterm of the form §§u or §§u.

3.2 Local Typing Condition

We now try to assign types to pseudo-terms in a locally compatible way. A
delicate point in DLAL is that it is sometimes natural to associate two types to
one variable x. For instance, we have x : A;bFprap « : §4 in DLAL, and this
can be read as x : !AF x : §4 in terms of DLAL* types. We thus distinguish
between the input types, which are inherent to variables, and the output types,
which are inductively assigned to all pseudo-terms. The condition (i) below is
concerned with the output types. In the sequel, D° denotes §A if D is of the
form !A, and otherwise denotes D itself.
A pseudo-term t satisfies the local typing condition if the following holds:
(i) one can inductively assign a linear type to each subterm of ¢ in the following
way (here the notation ¢4 indicates that ¢ has the output type A):

() pe (84)54 (§t54)a (AP .t5)pop

((tp—B)up°)B (Acta)va.a ((tva.a)B) A[B/a] »

(ii) when a variable 2 occurs more than once in ¢, it is typed as z'4,

(iii) ¢ satisfies the eigenvariable condition.
We also say that t is locally typed.

Notice that when D is a bang type, there is a type mismatch between D and
D¢ in the case of application. For instance, (tia—.p)usa satisfies (i) whenever ¢
and u do. This mismatch will be settled by the bang condition below. Observe
also that the local typing rules are syntax-directed.

3.3 Boxing Conditions

We now recall definitions and results from [BT05] giving some necessary condi-
tions for a pseudo-term to be typable (in [BT05] these conditions are used for El-
ementary Affine Logic typing). We consider words over the language £ = {§, §}*
and < the prefix ordering. If ¢ is a pseudo-term and w is an occurrence of subterm
in ¢, let doors(t,u) be the word inductively defined as follows. If ¢ = wu, define
doors(t,u) = €. Otherwise:

doors(§t, u) = § :: (doors(t, u)),

doors(§t, u) = § :: (doors(t,u)),

doors(Ay”.t1,u) = doors(Aa.t1,u) = doors((t1)A, u) = doors(ty,u),
doors((t1)te,u) = doors(t;,u) where t; is the subterm containing u.

That is to say, doors(t, u) collects the modal symbols §, § occurring on the path
from the root to the node u in the term tree of t. We define a map s : £L — Z
by:

s(e) =0, s(§::l) =14 s(1), s(§ 1) =—-1+4s().
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A word [ € L is weakly well-bracketed if VI < 1,s(l') > 0, and is well-bracketed
if this condition holds and moreover s(I) = 0: think of § and § resp. as opening
and closing brackets.

Bracketing condition. Let ¢ be a pseudo-term. We say that t satisfies the
bracketing condition if:

(i) for any occurrence of free variable x in ¢, doors(t, x) is well-bracketed;
moreover for any occurrence of an abstraction subterm Az.v of ¢,

(ii) doors(t, Az.v) is weakly well-bracketed, and

(iii) for any occurrence of x in v, doors(v, z) is well-bracketed.

This condition is sufficient to rule out the canonical morphisms for dereliction
and digging, which are not valid in DLAL (nor in EAL):

(/\.Z‘§A.§1‘)§A_OA, (>\$§A.§$)§A_o§§A .

Since doors(§z, ) = § and doors(§z, ) = §, they do not satisfy the bracketing
condition (iii).

Bang condition. A subterm wu is called a bang subterm of t if it occurs as
(ti4_op)uga in t. We say that a locally typed pseudo-term ¢ satisfies the bang
condition if for any bang subterm w of ¢,

(i) u contains at most one free variable 2'“, having a bang type !C.
(ii) for any subterm v of w such that v # u and v # z, s(doors(u,v)) > 1.

This condition is sufficient to rule out the canonical morphisms for monoidal-
ness |A®!B—ol(A ® B) and §A—olA which are not valid in LAL (the following
terms and types are slightly more complicated since Lpr ar« does not explicitly
contain a type of the form A —o!B):

ATA=E DG E=C NS )5((G0)iz) At (y)6(Ee)

In the first pseudo-term, the bang subterm §((§z)§z) contains more than one
free variable. In the second pseudo-term, the bang subterm §(§z) contains a free
variable typed by a linear type. Hence they both violate the bang condition (i).
A-Scope condition. The previous conditions, bracketing and bang, would be
enough to deal with boxes in the propositional fragment of DLAL. For handling
second-order quantification though, we need a further condition to take into
account the sequentiality enforced by the quantifiers. For instance consider the
following two formulas (the second one is known as Barcan’s formula):

(1) §Va.A — Va.§A | (2) Va.§A —o 8V A .

Assuming o occurs free in A, formula (1) is provable while (2) is not. Observe
that we can build the following pseudo-terms which are locally typed and have
respectively type (1) and (2):

t1 = A8 Ao §((§z)a) | ty = A" A0 §((z)a)

Both pseudo-terms satisfy the previous conditions, but t5 does not correspond
to a DLAL derivation.
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Let u be a locally typed pseudo-term. We say that u depends on «a if the
type of u contains a free variable ae. We say that a locally typed pseudo-term ¢
satisfies the A-scope condition if: for any subterm Ac.u of ¢ and for any subterm
v of u that depends on «, doors(u,v) is weakly well-bracketed.

Coming back to our example: t; satisfies the A-scope condition, but t2 does
not, because (x)a depends on a and nevertheless doors(§((x)a), (x)a) = § is not
weakly well-bracketed.

So far we have introduced four conditions on pseudo-terms: local typing,
bracketing, bang and A-scope. Let us call a regular pseudo-term satisfying these
conditions well-structured. It turns out that the well-structured pseudo-terms
exactly correspond to the DLAL typing derivations.

Theorem 3. Let M be a system F term. Then x1 : A1, ..., Tm : Am; Y1 -

Bi,...,Yn: By B M : C is derivable in DLAL if and only if there is a decomtzon
S .

t of M with type C* and with free variables xlAl,. A " yfg e Un B which

1s well-structured.

The ‘only-if’ direction can be shown by induction on the length of the derivation.
To show the converse, we observe that whenever pseudo-terms Az .t, (t)u, Aa.t,
(t)A are well-structured, so are the immediate subterms ¢ and u. The case of §¢
is handled by the following key lemma (already used for EAL* in [BT05]):

Lemma 4 (Boxing). If §(ta) is a well-structured pseudo-term, then there ex-
ist pseudo-terms va, (u1)ss,, ---, (Un)gB,, unique (up to renaming of v’s free
variables) such that:

1. FV(v) = {zP", ... 2B} and each x; occurs exactly once in v,

2. §t = §v[Suy /21, ..., 8un/x,] (substitution is assumed to be capture-free),

3. v,u1,...,u, are well-structured.

As a consequence of Theorem 3, our DLAL typing problem boils down to:

Problem 5 (decoration). Given a system F term M, determine if there exists a
decoration ¢ of M which is well-structured.

4 Parameterization and Constraints
4.1 Parameterized Terms and Instantiations

To solve the decoration problem (Problem 5), one needs to explore the infinite
set of decorations. This can be effectively done by introducing an abstract kind
of types and terms with symbolic parameters, and expressing the conditions for
such abstract terms to be materialized by boolean and integer constraints over
those parameters (like in the related type inference algorithms for EAL or LAL
mentioned in the introduction).

We use two sorts of parameters: integer parameters n,m, ... meant to range
over Z, and boolean parameters by, ba,... meant to range over {0,1}. We also
use linear combinations of integer parameters ¢ = ny + - - - + ny, where k > 0
and each n; is an integer parameter. In case k = 0, it is written as O.
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The set of parameterized types (p-types for short) is defined by:
F:=a|D-—A|Va.A, A :=8§°F, D = §P°F |

where b is a boolean parameter and c is a linear combination of integer param-
eters. Informally speaking, in §®F the ¢ stands for the number of modalities
ahead of the type, while the boolean b serves to determine whether the first
modality, if any, is § or !. In the sequel, A, B, C stand for linear p-types of the
form §°F, and D for bang p-types of the form §P:°F, and F for arbitrary p-types.

When A is a linear p-type §°F, B[A/a] denotes a p-type obtained by replacing
ecach §¢a in B with §t°F and each §* o with §7<+¢F. When D = §P:¢F,
D° denotes the linear p-type §°F.

We assume that there is a countable set of variables z”, y”, ... for each bang
p-type D. The parameterized pseudo-terms (p-terms for short) ¢, w. .. are defined
by the following grammars:

D
)

to=8%, wu=aP | AePt| ()t | Aat | (H)A .

We denote by par®®!(t) the set of boolean parameters of ¢, and by pari™(t)
the set of integer parameters of t. An instantiation ¢ = (¢°, ¢') for a p-term
t is given by two maps ¢° : par®°(t) — {0,1} and ¢’ : par'™(t) — Z. The
map ¢’ can be naturally extended to linear combinations ¢ = ny + - - - + ny by
¢'(c) = ¢'(ny) + - -+ + ¢*(nx). An instantiation ¢ is said to be admissible for a
p-type E if for any linear combination ¢ occurring in E, we have ¢'(c) > 0, and
moreover whenever §?¢F occurs in E, ¢*(b) = 1 implies ¢(c) > 1. When ¢ is
admissible for E, a type ¢(E) of DLALx is obtained as follows:

B(EF) = §2 O9(F),  $(§>°F) = §2 ©g(F) if ¢*(b) =0,
=182 (©)=1(F)  otherwise,

and ¢ commutes with the other connectives. An instantiation ¢ for a p-term ¢ is
said to be admissible for t if it is admissible for all p-types occurring in ¢t. When
¢ is admissible for ¢, a regular pseudo-term ¢(t) can be obtained by replacing
each §™u with §2" (™), each 2P with 2%(P) and each (t)A with (t)p(A).

As for pseudo-terms there is an erasure map (.)~ from p-terms to system F
terms consisting in forgetting modalities and parameters.

A free linear decoration (free bang decoration, resp.) of a system F type T is
a linear p-type (bang p-type, resp.) E such that (i) E~ = T, (ii) each linear
combination ¢ occurring in E consists of a single integer parameter m, and (iii)
the parameters occurring in F are mutually distinct. Two free decorations T’
and T'9 are said to be distinct if the set of parameters occurring in 7' is disjoint
from the set of parameters in T’5.

The free decoration M of a system F term M (which is unique up to renam-
ing of parameters) is obtained as follows: first, to each type T of a variable 7
used in M, we associate a free bang decoration T', and to each type U occurring
as (N)U in M, we associate a free linear decoration U with the following proviso:
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(i) one and the same T is associated to all occurrences of the same variable z7';

(ii) otherwise mutually distinct free decorations T, ..., T, are associated to
different occurrences of T'.

M is now defined by induction on the construction of M:

2T =§mg? \aT M = §™ T M, (M)N =§2((M)N),
Aa.M = §™Aa. M,  (M)T = §™((M)T),

where all newly introduced parameters m are chosen to be fresh. The key prop-
erty of free decorations is the following:

Lemma 6. Let M be a system F term and t be a reqular pseudo-term. Then t
s a decoration of M if and only if there is an admissible instantiation ¢ for M
such that ¢(M) = t.

Hence our decoration problem boils down to:

Problem 7 (instantiation). Given a system F term M, determine if there exists
an admissible instantiation ¢ for M such that ¢(M) is well-structured.

For that we will need to be able to state the four conditions (local typing,
bracketing, bang, and A-scope) on p-terms; they will yield some constraints on
parameters. We will speak of linear inequations, meaning in fact both linear
equations and linear inequations.

4.2 Local Typing Constraints

First of all, we need to express the unifiability of two p-types F; and Fs. We
define a set U(E1, E2) of constraints by

Z/{(a,a):@, Z/[(Dl—OA1,D2—OAQ):Z/[(Dl,DQ)Uu(A1,A2),
L{(Va.Al,Va.Az) = U(Al,Az), L{(§°1F1,§°2F2) = {Cl = Cz} Uu(Fl,Fz),
L{(§b1’°1F1,§b2*°2F2) = {bl =bz,c1 = Cz} Uu(Fl,Fz).

and undefined otherwise. It is straightforward to observe:

Lemma 8. Let Ey, E2 be two p-types such that U(E1, E2) is defined, and ¢ be
an admissible instantiation for Ey and Es. Then ¢(E1) = ¢(Es) if and only if
¢ is a solution of U(E1, Es).

For any p-type E, M(E) denotes the set {c > 0: coccursin E} U{b=1=
c>1: §»°F occurs in E}. Then ¢ is admissible for E if and only if ¢ is a
solution of M(FE).

Now consider the free decoration M of a system F typed term M. We assign
to each subterm ¢ of M a linear p-type B (indicated as tp) and a set M(t) of
constraints as on Figure 2. Notice that any linear p-type is of the form §°F.
Moreover, since t comes from a system F typed term, we know that F' is an
implication when ¢ occurs as (tger)u, and F' is a quantification when ¢ occurs
as (tgep)A. The set U(D°, A) used in M((t)u) is always defined, and finally, M
satisfies the eigenvariable condition.

Let Ltype(M) be M(M)U{b=1": 28"°F oceurs more than once in M},
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(z”)pe M(z) = M(D)
(&™ t§°F)§m+°F (§mt) ={m+c2>0}UM()
()\I tA)§0(D40A) M(}\f t) :M( )UM( )
((tse(p—m))ua)p  M((t)u) = {c =0} UU(D®, A) UM(t) UM(u)
(Aa.tA)§ova.A M(Aa.t) = M(t)
((tseva.B)A)Blaja) M((H)A) = {c =0} UM(A) UM(t)

Fig. 2. M(t) constraints

4.3 Boxing Constraints

In this section we need to recall some definitions from [BT05]. We consider the
words over integer parameters m, n ..., whose set we denote by L,,.

Let t be a p-term and u an occurrence of subterm of ¢t. We define, as for pseudo-
terms, the word doors(¢,u) in £, as follows. If ¢ = u, define doors(t,u) = e.
Otherwise:

doors(§™t,u) = m :: (doors(t,u)),
doors(\y D t1,u) = doors(Aa.ty,u) = doors((t;)A,u) = doors(ty,u),
doors((tl)tg7 u) = doors(t;,u) when ¢; is the subterm containing u.

The sum s(I) of an element [ of £, is a linear combination of integer parame-

ters defined by: s(¢) = 0, s(m :: l) = m + s(l). For each list | € £,, define

wbracket(l) = {s(I’) > 0 | I’ <1} and bracket(l) = wbracket(l) U {s(l) = 0}.
Given a system F term M, we define the following sets of constraints:

Bracketing constraints. Bracket()) is the union of the following sets:

(i) bracket(doors(M,x)) for each free variable z in M,

and for each occurrence of an abstraction subterm Axz.v of M,
(ii) wbracket(doors(M, Az.v)),

(iii) bracket(doors(v,x)) for each occurrence of = in v.

Bang constraints. A subterm u4 that occurs as (t§cf(§b,cF%B))uA in M is

called a bang subterm of M with the critical parameter b. Now Bang(M) is
the union of the following sets: for each bang subterm u of M with a critical
parameter b,

(i) {b = 0} if u has strictly more than one occurrence of free variable, and
{b=1= b’ =1} if u has exactly one occurrence of free variable z% ¥’

(ii) {b =1 = s(doors(u,v)) > 1 : v subterm of u such that v # u and v # z}.

A-Scope constraints. Scope(M) is the union of the following sets:

(i) wbracket(doors(u,v)) for each subterm Aa.u of M and for each subterm v of
u that depends on a.
We denote Const(M) = Ltype(M )UBracket(M)UBang(M)UScope(M). Then:

Theorem 9. Let M be a system F term and ¢ be an instantiation for M. Then:
¢ is admissible for M and ¢(M) is well-structured if and only if ¢ is a solution
of Const(M). Moreover, the number of (in)equations in Const(M) is quadratic
in the size of M.
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5 Solving the Constraints

From a proof-net point of view, naively one might expect that finding a DLAL
decoration could be decomposed into first finding a suitable EAL decoration
(that is to say a box structure) and then determining which boxes should be !
ones. This however cannot be turned into a valid algorithm because there can
be an infinite number of EAL decorations in the first place.

Our method will thus proceed in the opposite way: first solve the boolean
constraints, which corresponds to determine which !-boxes are necessary, and
then complete the decoration by finding a suitable box structure.

5.1 Solving Boolean Constraints

We split Const(M) into three disjoint sets Const’(M), Const’(M), Const™
(M):

o A boolean constraints € Constb(M) consists of only boolean parameters. s is
of one of the following forms:
b1 = ba (in Ltype(M)), b=1 (in Ltype(M)),
b=0 (in Bang(M)), b=1=Db =1 (in Bang(M)).

o A linear constraint s € Const'(M) deals with integer parameters only. A
linear constraint s is of one of the following forms:
c1 = c2 (in Ltype(M)), c =0 (in Ltype(M) and Bracket(M)),
c>0 (in Ltype(M), Bracket(M), Scope(M)).

e A mized constraints € Const™ (M) contains a boolean parameter and a linear
combination and is of the following form:
b=1=c¢>1 (in Ltype(M) and Bang(M)).

We consider the set of instantiations on boolean parameters and the exten-
sional order < on these maps: 1* < ¢® if for any b, ¥*(b) < ¢*(b).

Lemma 10. Constb(M) has a solution if and only if it has a minimal solution
P, Moreover one can decide in time polynomial in the cardinality of Constb(M)
if there exists a solution, and in that case provide a minimal one.

5.2 Solving Integer Constraints

When ¢° is a boolean instantiation, ¢*Const™ (M) denotes the set of linear con-
straints defined as follows: for any constraint of the form b =1 = ¢ > 1 in
Const™ (M), ¢ > 1 belongs to ¢”Const™ (M) if and only if ¢*(b) = 1. It is then
clear that (*) (¢°, ¢") is a solution of Const(M) if and only if ¢° is a solution of
Const’(M) and ¢ is a solution of ¢*Const™ (M) U Const'(M).

Proposition 11. Const(M) admits a solution if and only if it has a solution
¥ = (Y0, ") such that b is the minimal solution of Const®(M).

Proof. Suppose that Const(M) admits a solution (¢° ¢?). Then by the previ-
ous lemma, there is a minimal solution ¢° of Constb(M). Since ° < ¢°, we
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have ¢*Const™ (M) C ¢"Const™(M). Since ¢' is a solution of ¢*Const™ (M) U
Const' (M) by (*) above, it is also a solution of 1)®*Const” (M) U Const"(M). This
means that (¢°, ¢%) is a solution of Const(M).

Coming back to the proof-net intuition, Proposition 11 means that given a syn-
tactic tree of term there is a most general (minimal) way to place ! boxes (and
accordingly ! subtypes in types), that is to say: if there is a DLAL decoration
for this tree then there is one with precisely this minimal distribution of ! boxes.
Now notice that 1*Const™ (M) U Const’(M) is a linear inequation system, for
which a polynomial time procedure for searching a rational solution is known.

Lemma 12. ¢*Const™(M)UConst'(M) has a solution in Q if and only if it has
a solution in 7.

Theorem 13. Let M be a System F term. Then one can decide in time poly-
nomial in the cardinality of Const(M) whether Const(M) admits a solution.

Proof. First decide if there is a solution of Constb(M), and if it exists, let ¥°
be the minimal one (Lemma 10). Then apply the polynomial time procedure to

decide if 1*Const™ (M) U Const’(M) admits a solution in Q. If it does, then we
also have an integer solution (Lemma 12). Otherwise, Const(M) is not solvable.

By combining Theorem 3, Lemma 6, Theorems 9 and 13, we finally get:

Theorem 14. Given a system F term M7, it is decidable in time polynomial
in the size of M whether there is a decoration A of T such that Fppap M : A.

6 Implementation

Overview. We designed an implementation of the type inference algorithm. The
program is written in functional Caml and is quite concise (less than 1500 lines).
A running program not only shows the actual feasibility of our method, but also
is a great facility for building examples, and thus might allow for a finer study
of the algorithm.

Data types as well as functions closely follow the previous description of the
algorithm: writing the program in such a way tends to minimise the number of
bugs, and speaks up for the robustness of the whole proof development.

The program consists of several successive parts:

1. Parsing phase: turns the input text into a concrete syntax tree. The input is
an F typing judgement, in a syntax a la Church with type annotations at the
binders. It is changed into the de Bruijn notation, and parameterized with
fresh parameters. Finally, the abstract tree is decorated with parameterized
types at each node.

2. Constraints generation: performs explorations on the tree and generates the
boolean, linear and mixed constraints.
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3. Boolean constraints resolution: gives the minimal solution of the boolean
constraints, or answers negatively if the set admits no solution.
4. Constraints printing: builds the final set of linear constraints.

We use the simplex algorithm to solve the linear constraints. It runs in O(2"),
which comes in contrast with the previous result of polynomial time solving,
but has proven to be the best in practice (with a careful choice of the objective
function).

Example of execution. Let us consider the reversing function on binary
words. It can be defined by a single higher-order iteration, and thus represented
by the following system F term, denoted rev:

MW . AB.Ns0P =B \siP =P (1 (B — B))
Aa? =B \zP . (a)(s0)x
Xa? =B \2P (a)(si)x (AaXz®.2)0

We apply it to : Aa.Aso* 7% A\si®~* \x®.(s1)(s0)(si)(s0)x, representing the word
1010, in order to force a meaningful typing. Since rev involves higher-order
functionals and polymorphism, it is not so straightforward to tell, just by looking
at the term structure, whether it works in polynomial time or not.

Given rev(1010) as input (coded by ASCII characters), our program pro-
duces 177 (in)equations on 79 variables. After constraint solving, we obtain the

result:
(AW . AB.As0'(B=0B) Ngi!(B=0B),
§(8((L (B—p))
§Aa’ P AP .(a)(§s0)x
§AaP B \zP.(a)(§si))
(Aa.Xz%.2)B)
A As0' ™ \si®™ g . (8s1)(§s0)(§s1)(§s0)x
It corresponds to the natural depth-1 typing of the term rev, with conclusion
type Wprar — Wprar. The solution ensures polynomial time termination, and
in fact its depth guarantees normalization in a quadratic number of S-reduction
steps. Further examples and the program are available at:
http://www-lipn.univ-parisl13.fr/~atassi/

7 Conclusion

We showed that typing of system F terms in DL AL can be performed in a feasible
way, by reducing typability to a constraints solving problem and designing a
resolution algorithm. This demonstrates a practical advantage of DLAL over
LAL, while keeping the other important properties. Other typing features could
still be automatically infered, like coercions (see [Ata05] for the case of EAL).

This work illustrates how Linear logic proof-net notions like boxes can give
rise to techniques effectively usable in type inference, even with the strong boxing
discipline of DL AL, which extends previous work on EAL. We expect that some
of these techniques could be adapted to other variants of Linear logic, existing
or to be defined in the future.
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MSO Queries on Tree Decomposable Structures
Are Computable with Linear Delay

Guillaume Bagan

Université de Caen, GREYC, Campus 2, F-14032 Caen cedex - France

Abstract. LINEAR-DELAY;, is the class of enumeration problems com-
putable in two steps: the first step is a precomputation in linear time in
the size of the input and the second step computes successively all the
solutions with a delay between two consecutive solutions y; and y2 that
is linear in |y2|. We prove that evaluating a fixed monadic second order
(MSO) query ¢(X) (i.e. computing all the tuples that satisfy the MSO
formula) in a binary tree is a LINEAR-DELAY;, problem. More precisely,
we show that given a binary tree T and a tree automaton I representing
an MSO query ¢(X), we can evaluate I" on T with a preprocessing in
time and space complexity O(|I'|*|T'|) and an enumeration phase with
a delay O(|S]) and space O(max|S|) where |S| is the size of the next
solution and max|S| is the size of the largest solution. We introduce a
new kind of algorithm with nice complexity properties for some algebraic
operations on enumeration problems. In addition, we extend the precom-
putation (with the same complexity) such that the i*" (with respect to
a certain order) solution S is produced directly in time O(]S|log(|T])).
Finally, we generalize these results to bounded treewidth structures.

1 Introduction

Determining how difficult it is to compute a query written in a given language
is an important task in theorical computer sciences. A language which has de-
served much attention is the monadic second order logic (MSO). It is well known
that a lot of NP-complete problems can be expressed as the model checking of
a MSO-sentence. Nevertheless, for particular kinds of structures, the complexity
can be improved. Classes of bounded treewidth structures are of particular in-
terest. Courcelle [6] proved that deciding if a MSO-sentence holds in a bounded
treewidth structure can be done in linear time in the size of the structure (with a
constant factor that highly depends of the size of the formula). Arnborg, Lager-
gren and Seese[2] proved that given a fixed MSO-formula »(X) and a bounded
treewidth structure S, counting the number of solutions (i.e assignments of vari-
ables which satisfy the formula) can be done with the same complexity. Courcelle
and Mosbah [8] proved that enumerating all solutions which satisfy a MSO query
on a bounded treewidth structure can be done in time polynomial in the size of
the structure and the size of the output. Frick, Flum and Grohe [11] improved
this by proving that this can be done in linear time in the size of the structure
plus the size of the output.

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 167-181, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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Recently, Durand and Grandjean [10] were interested in logical queries viewed
as enumeration problems and studied the delay between two solutions instead
of the global time of the algorithm.

They introduced the class CONSTANT-DELAY;, which consists of enumeration
problems computable in two steps: the first step is a precomputation which is
done in time and space complexity linear in the size of the structure, the second
step is the enumeration phase which outputs all the solutions with a constant
delay between two consecutive ones. They showed that evaluating FO-queries
on bounded degree structures is a CONSTANT-DELAY;,, problem.

The main goal of this paper is to revisit the complexity of the evaluation of
MSO queries on bounded treewidth structures. Meanwhile, the class CONSTANT-
DELAYy;, contains only problems where the size of each solution is bounded by a
constant. We introduce the class LINEAR-DELAY;, which is a generalization of
CONSTANT-DELAY;, where the delay between two consecutive solutions is linear
in the size of the second one. The main result of this paper is that evaluating
MSO-queries on binary trees is a LINEAR-DELAY;, problem. More precisely, by
using the well known translation of a MSO formula on binary trees into tree
automaton [15], we show, that given a tree T and a tree automaton I" which
represent the formula ¢(X), we can do a precomputation in time O(|I"|?|T|)
and then output all the solutions (with respect to a certain order) with a delay
O(|S]) where |S| is the size of the next solution S to be computed (that depends
neither on the size of the structure nor on the size of the automaton) and space
O(max{|S| : S € ¢(T)}). As a consequence, it can be computed with a total
time O(|T]3|T| + ||¢(T)||) (where ||¢(T)]| is the total size of the outputs that is
> sep(r) [S]) and space O(|T?|T|). To obtain this result, we use several tools.
First, we introduce some algebraic operations on enumeration problems. Then,
we express the problem of evaluation of a MSO-query as a combination of simple
enumeration problems by these operations. In addition, we introduce a new kind
of precise enumeration algorithm, called tiptop algorithm, which computes a
enumeration problem in a lazy way.

Another problem considered in this paper consists, given a MSO formula ¢(X)
and a binary tree T of producing directly the i*" solution S (with respect to the
same order than the evaluation problem). We show that this can be done in
two part: first we do a precomputation (that does not depend on %) in linear
time in the size of the structure and then for each input ¢, we can produce the
ith solution (using the precomputation) with time O(|S|log(|T|)). An immediate
consequence of this result is an algorithm for the uniform random generation of
solutions of a MSO-query with the below complexity.

Finally, we show that these two results can be generalized to structures of
bounded treewidth.

Notice that our results improve the similar results of a very recent paper by
Courcelle (submitted in Mars 2006 to a special issue of Discrete Mathematics
[7]) and have been proved independently and in the same period. By using a
notion of DAG structure (AND-OR structure), Courcelle obtains in particular
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an enumeration algorithm for evaluation of MSO-queries in binary trees with a
linear time delay but with a precomputation in O(|T|log(|T|)). Our results are
simpler and optimal.

The paper is organized as follows. First, basic definitions are given in section 1.
In particular, we define the class LINEAR-DELAY;,. In section 2, we consider
the evaluation problem of MSO formulas over binary trees. In subsection 2.3, we
give an efficient implementation of a linear delay algorithm for this problem. In
particular, tiptop algorithms and algebraic operations on enumeration problems
are introduced. In section 3, we consider the problem of computing directly ith
element. Finally, in section 4, we show that these results can be generalized to
MSO-queries on bounded treewidth structures.

2 Preliminaries

The reader is expected to be familiar with first-order and monadic second order
logic (see e.g. [14]). We use in this paper the Random Access Machine (RAM)
model with uniform cost measure (see [1,13,12]).

2.1 Enumeration

Given a binary relation A, the enumeration problem ENUM — A associated with A
is the problem described as follows: For each input z, ENUM — A(z) = {y|(z,y) €
A}. We call ENUM — A(z) the set of solutions of ENUM — A on z. To measure
without ambiguity the complexity, we need to be more precise on the structure
of the output. We say that an algorithm A computes ENUM — A if

— for any input x, A writes sequentially the output #y1#yo#.....4#y,# where
(y1,---, yn) is an enumeration (without repetition) of the set ENUM — A(x),

— it writes the first # when its starts,

— it stops after writing the last #.

Let A be an enumeration algorithm and x be an input of A. Let time;(x)
denote the time when the algorithm writes the ith # if it exists. We define
delay;(x) = time;11(x) — time;(x).

Definition 1. An enumeration algorithm A is constant delay if there is a con-
stant ¢ such that for any input x and for any i, delay;(x) < ¢ and A uses space
O(o]).

An enumeration algorithm A is linear delay if there is a constant ¢ such that
for any input x and for any i, delay;(x) < cly;| and A uses space O(|z|).

An enumeration problem ENUM — A is said to be computable with linear de-
lay, which is denoted by ENUM — A € LINEAR-DELAY if there is a linear delay
algorithm A which computes ENUM — A.

An enumeration problem ENUM — A is LINEAR-DELAYy;, if it is reducible in
linear time to a problem in LINEAR-DELAY.
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2.2 Trees and Tree Automata

A X-tree T is a pair (D,label) where the tree domain D is a subset of {1,2}*
that is prefix-closed and such that if s € D then either s.1 and s.2 or none of
them belong to D (i. e. T is a locally complete tree) and label is a function from
D to X (the labelling function). s.1 and s.2 are the first child and the second
child of s. If x is a prefix of y then z is an ancestor of y and y is a descendant of
x. € is the root of T'. A leaf is a node without children and an internal node is a
node with two children. We denote by Leaves(T") the set of leaves of T and by
root(T’) the root of T'. T, denotes the subtree of T rooted by x. Associate to each
alphabet X, the first-order signature the signature 75, = (succy, succe, (Py)acs)-
We do a confusion between a X-tree and its encoding as a Tx-structure 7' =
(D, succy, succa, (Py)qcx) where P, is interpreted as {s € D,label(s) = a} and
succ; is interpreted as {(s, s.i)|s, s.i € D}. We denote by X' — TREES the set of
all Y-trees.

We give some definitions on tree automata, for more details see [5]. A complete
deterministic bottom-up tree automaton (tree automaton for short) is a tuple
(X,Q,90,6,Qf) where Q is a finite set of states, gy € @ is the initial state,
Qs C Q is the set of final states, and ¢ : @ x Q x X — @ is the transition
function. We abbreviate 6(qo, qo, ) t0 8init(z) Let I" be a tree automaton and T’
be a X-tree, the run of I" on 7', denoted by run(I',T'), is the mapping r : T' — Q
defined by the following conditions.

— If z is a leaf then r(x) = ;¢ (label(z))
— If z is an internal node whose first and second children are y; and ys then

r(z) = 8(r(y1), 7(y2), label(z)).

We say that the run r is accepting if r(root(T')) € Q. I" accepts T if its run is
accepting. The set of trees accepted by I' is called the language recognized by
I'" and is denoted by L(I).

A language L is regular if there is a tree automaton I" which recognizes L.

Theorem 1. [15] A language L is regular if and only if it is definable by an
MSO-formula. There is an algorithm which, given an MSO/[rs] formula which
defines the language L, computes a tree automaton that recognizes the same
language L.

2.3 MSO Queries

For a signature 7 and a class of 7-structures C, we consider the following problem
QUERY(MSO, 7, C): B B
Input: a 7-structure S € € and an MSO[7] formula ¢(X, ) where X = (X1, ...,

Xi) and ¥ = (y1,-.-y1).
Parameter: ¢

Output: ¢(8) = {(4,b) € P(D)* x D'|(S, A,b) = (X, )} *.

! Here and below, a P(D) denotes the power set of the set D.



MSO Queries on Tree Decomposable Structures 171

We are interested in the parameterized complexity of the problem (see [9])
with the formula ¢ as parameter.

From now, we are interested in the specific problem QUERY(MSO, 75, X-
TREES).

Without loss of generality, we can restrict the problem to queries without first
order variable. Indeed, it suffices to consider a first order variable as a singleton
second order variable.

2.4 Specific Notations

For a vector v = (v1,...,vx) let © | @ denote its ith component v;. Let S; and
S5 be two k-tuples of sets, the combination of S and S», denoted by S; @ Ss,
is defined such that (S} @ So) [ i = (S1 [ i) U (So | 7). Let A and B be two
sets of k-tuples of sets. The product of A and B, denoted by A ® B is the set
{S1 ® 55|81 € A, Sy € B}. For an element z of S and a vector v € {0,1}*, we
denote by x, the k-tuple such that

z, M:{{m}ifvuzl

()  otherwise

3 Evaluation of MSO-Queries

Theorem 1 applies only to sentences. To adapt it to any MSO formula o(X7, ...
X}), we consider the enriched alphabet X' = X x {0,1}*. For any X-tree
T = (D,labelr) and any k-tuple of sets S 2, we can associate the tree Tg =
(D, labelys) with same domain as T' and such that labelys (z) = (labely(z),v)
where © is the characteristic vector of S i.e. verifying © [ i = 1 if and only
x € S | i. Therefore, we can consider the language L., such that T € L, if and
only if (T, 5) & ¢(X). By abuse of notation, we do confusion between the pair
(T, S) and the tree Tg.

For simplicity, we will restrict to X-trees whose internal vertices are labeled by
a dummy color @ and to formulas where interpretations of second order variables
are restricted to subsets of the leaves. The next lemma explains how to reduce
the general case to these conditions.

Lemma 1. Let X be a finite alphabet and set X' = X U {@}. There is an
algorithm which given a M SO|rs]-formula ¢ computes a M SO[rs/]-formula ¢’
and there is a linear time algorithm which given a X-tree T computes a X' -tree
T’ such that

— Dom(T) = Leaves(T")

— the internal nodes of T are labeled by @

— @(T) =¢'(T")

2 Here and below, a k-tuple of sets, or for short, a k-tuple S is a k-tuple of subsets of
the domain D of T.
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As internal nodes are labeled by @, we use the notation ¢1,¢q2 — ¢ which
means 6(q1, g2, @) = ¢ for the transition function ¢ of an automaton I

We consider now an MSO-query ¢(X) that defines a language L, = {Tg :
(T,5) E (X))}, Let I' = (X', Q, o, 6, Q) be a tree automaton on the alphabet
X' = ¥ x {0, 1}* which recognizes L. Let T = (D, label) be a X-tree. A config-
uration of (I',T) is an element of D x Q. Let a k-tuple S € P(Leaves(T))*, an S-
configuration is a configuration (x, ¢) such that r(z) = ¢ where r = run(I, T, S):
it is the unique S-configuration of z.

We want to enumerate the tuples S € P(Leaves(T))* such that r(root(T)) €
Qy forr = run(I T, S). Clearly, this can be done in a recursive way. For any tuple
S and any node x of T', let S, denote the restriction of S to the subtree T}. It is
clear that the state ¢ = r(x) for r = run(I', T, S) only depends on S,. For any
configuration (x, ) let stuples(z, ¢) denote the set of tuples S € P(Leaves(T}))"
such that r(z) = q for r = run(I, T, S).

Let us notice two easy but useful facts:

Let x be any internal node of T' with children y; and yo

1. It holds S, = S,, ® Sy, and (Sy, [9) N (Sy, [i)=0foranyi=1,...,k.
2. For each ¢ € @, it holds

stuples(z,q) = | ) stuples(y1, 1) ® stuples(yz, g2)

(q1,92)€Q?
q1,92—q

and this is a disjoint union.

Remark: The disjointness property in (2) is a straightforward consequence of
the determinism of the automaton I.

At the first glance, properties (1) and (2) above seem to give the very principle
of an efficient algorithm that enumerates the elements (i.e., k-tuples) of the set
stuples(z, q) for any given configuration (z, ¢). Unfortunately, this does not yield
the linear delay we hope between consecutive solutions. Indeed such a trivial
algorithm may lose much time in performing unions of empty sets, namely in
computing A ® B when either of the operand sets A and B contains the k-
tuples of empty sets ) = (0,...,0). To overcome this difficulty, we keep apart
the "empty” k-tuple () and classify the nodes of the tree T according to each
tuple S € P(Leaves(T))*, for S # ().

Let S € P(Leaves(T))* and = be a node of T. We say that x is an S-active
node if (S | i) N Leaves(T},) # () for some i. We say otherwise that x is S-passive.
In case z is an internal node with children y; and ys. Then z is S-transitive if it
is S-active and only one of its children is S-active. x is S-fork if its children g
and g, are both S-active. A node is S-useful if it is an S-fork node or an S-active
leaf. We give similar definitions for configurations. For example, a configuration
(x,q) is S-transitive if it is the S-configuration of an S-transitive node.

The reduced tree associated to (T, S) is the graph denoted by T;—fsef ul and
built as follows:
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1. The nodes of Tgsef“l are the S-useful nodes of T
2. We put an edge from z to y if y is a descendant of z in 7" and there is no
S-useful nodes between them in T'.

It is easily seen that Tgsef ul

is a binary tree.
We notice that, given any vertex z, the S-configuration (z,q) of x is the same
for any tuple S such that x is S-passive. We call ¢ the passive state of = and

(z,q) the passive configuration of z.

Ezample 1. We assume that S = {8,13,14,15} for k = 1 (one predicate only).The
filled circles represent S-useful vertices, bold circles represent S-transitive ver-
tices and normal circles represent S-passive vertices.

Fig. 1. A tree Tg and its reduced tree Tgsef"l

Let (z,q), (y1,491) and (y2, ¢2) be three configurations such that y; and yo are
the first and second children of x, and such that ¢1,g2 — ¢g. We say that (z,q)
is empty-accessible from (yi1,q1) if (y2,q2) is a passive configuration. Similarly

(z,q) is empty-accessible from (y2,q2) if (y1,¢1) is a passive configuration We

use the notation (z’,¢") LN (z,q) to mean that (z,q) is empty-accessible from

(', q).
Let — denote the reflexive and transitive closure of the relation . If we
have (2/,¢') — (z,q) then we say that (z,q) is transitively accessible from

(=',q).

Lemma 2. 1) Let S € P(Leaves(T))* and let (z,q) and (2',q') be two S-active
configurations such that x is an ancestor of x'. If there is no S-fork configuration
(except eventually (x',q")) in the unique path between (x,q) and (z',q’) then
(@,q') = (z,q).

2) Let (x,q) and (z',q') be two configurations such that (z',q) — (x,q). Let
S € P(Leaves(Ty))F. If (2, q') is the S-active configuration of o' then (z,q) is
the S-configuration of x.

We denote by suseful(z, q) (resp sactive(x,q)) the set of tuples S € P(Leaves
(T,))* such that (r,q) is a S-useful (S-active) configuration. We denote by senum
the set of tuples S # () such that I" accepts (T}, .5).

Lemma 3. Let (x,q) be a configuration.
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1. If x is a leaf then

suseful(x, q)

U {7}
— k k
b b2 9=
and this is a disjoint union.
2. If x is an internal node of first and second children y; and ys.

suseful(x, q) = U sactive(y1, 1) ® sactive(yz, g2) (2)

(q1,92)€Q?
q1,92—q

and this is a disjoint union.
3. It holds
sactive(x, q) = U suseful(y, q') (3)
(v:4')€D*Q
(y,4")—(z,9)

and this is a disjoint union.
4. It holds

senum = U sactive(root(T), q) (4)
q€Qy

and this is a disjoint union

Equations (1-4) are not sufficient for our complexity purpose. We need to ensure
that we do only non empty unions. We say that a configuration (z,q) is poten-
tially active, (resp potentially useful) if there is a tuple S € P(Leaves(T'))* such
that (z,q) is S-active (resp S-useful). We denote by PUSEFUL the set of poten-
tially useful configurations. Let (x,¢q) be a configuration such that x is a leaf,
and define PINIT(z, q) = {v € {0, 1}* —{0}*6;,.:;:(1abel(z), v) = q}. Let (z,q) be a
potentially fork configuration and let y1, y2 be the children of z. Let PPAIR(z, q)
denote the set of pairs of states (q1,¢2) such that ¢1,q2 — ¢ and (y1,¢1) and
(y2, g2) are potentially active. We denote by PFINAL the set of final states ¢ such
that (root(T), q) is potentially active. We can deduce by definition, refinements
of the above equations (1-4).

1. If z is a leaf then

suseful(z, ¢) = U {@} (1)

UEPINIT(z,q)

2. If z is a internal node with children y; and ys then

suseful(z, ¢) = U sactive(y1, 1) ® sactive(yz, q2)  (2')
(q1,92) EPPAIR(z,q)
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3. If (x,q) is a potentially active configuration then

sactive(x, q) = U suseful(y, ¢') (3"

(y,q') EPUSEFUL
(y,")—(2,q)

4. It holds
senum = U sactive(root(T), q) (4"

gEPFINAL

3.1 Transition Tree
The transition tree denoted by T? is a graph built as follows
— The domain of T? is the set of configurations of (I, T).

— We put an edge from c¢; to ¢z if ¢o R c1.

As I is a deterministic automaton, it is easily seen that 77 is a forest whose
set of roots is {root(T)} x Q.

Notice that T is a (non necessarily binary) forest. As it is more convenient
to consider T? as a tree, we can add to the graph a new dummy configuration
and connect it to the root configurations.

By definition of 7%, note that the set of potentially useful configurations (y,q")
such that (y,¢') — (x,q) is exactly PUSEFUL ﬁT(‘Z‘,’E’q) where T(@m)q) is the subtree
of T? of root (x,q). Consider a postfix order o on the vertices of the tree T?. By
definition of a postfix order, it is easily seen that for every configuration (z, q),
the set of nodes of T(Qm)q) is a segment of . Let PUSEFUL]i] denote the i‘" element
of PUSEFUL with respect to the order o. For each potentially active configuration
(z,q), we call first(z,q) (resp last(z,q)) the least (resp the greatest) index 4
such that PUSEFUL]¢] belongs to T&’q). As (z,q) is potentially active, first(z,q)
and last(z, q) are always defined. Clearly, the potentially useful configurations
(2',¢") such that (2,¢') — (z,q) are exactly the configurations PUSEFUL]i]
such that first(z,q) < i <last(x,q). We obtain the following equation which is
equivalent to 3.

For each potentially active configuration (z, q),

last(z,q)
sactive(z, q) = U suseful (PUSEFUL][i]) (3”)
i=first(z,q)

3.2 Efficient Implementation of Our Enumeration Algorithm

Our final enumeration algorithm will implement efficiently the above equations
1723”7 .4’ by additional technical tools:

1. two algebraic binary operations to compose enumeration problems and their
enumeration algorithms in a modular and uniform manner
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2. an efficient data structure to represent outputs : sets S C D or k-tuples of
sets S € P(D)*.
3. A new kind of precise enumeration algorithm called tiptop algorithm.

Let A and B be two problems of enumeration of k-tuples of sets verifying the
following conditions: for any input x and for any S; € A(x) and Sy € B(z), it
holds (S7 i) N (Sz | i) = 0. Then the product of A and B denoted by A ® B is
defined as follows: (A ® B)(z) = A(z) ® B(x).

Let A and B be two enumeration problems such that

— A has two inputs x and y and B has one input .
— for any z,y, we have A(x,y) # 0
— for any z, y, z such that y # z, we have A(z,y) N A(x,z) =0

then the composition of A and B denoted by (A o B) is defined as follows:
(Ao B)(z) = Uyep() Al@, ).

We rephrase the equations (1’-4’) by using our operations ® and o and by
introducing intermediate enumeration problems. We assume implicitly that all
the problems have an additionnal input that is the tree T and the automaton I".

pfinal = {q € Q¢ : (root(T), q) is potentially active}
accessible(x, ¢) = {PUSEFUL(4)| first(x,q) < i < last(z)}
pair(z,q) = {(y1,q1,92,92)|(q1, g2) € PPAIR(z,q)}
where y; and ys are the first and second child of x
product(x1, g1, z2, q2) = sactive(x1, 1) & sactive(xs, g2)
suseful(z, ¢) = sfork(zx, ¢) if  is an internal node
= sleaf(x, q) otherwise
sleaf(z, ¢) = {@,|v € PINIT(z, ¢)}
sfork(z, ¢) = product o pair(z, q)
sactive(x, ¢) = suseful o accessible(z, q)
senum = sactive o pfinal

It is easily seen that senum computes all tuples S = () such that I' accepts
(T,5).

Definition 2. A tiptop algorithm A for an enumeration problem is an enumer-
ation (RAM) algorithm using two special instructions denoted by tip and top so
that for any input x with exactly m distinct outputs y;, i =1,...,m

— A runs into exactly m phases, phase(y;) corresponding to the it" output y;

— phase(y;) includes exactly one tip instruction called tip(y;) and one top in-
struction that is the last one of the phase

— tip(y;) means that the i*" output y; is available in the RAM memory (typi-
cally as a data structure using pointers)

— at the end of the run that is the m* top, all the RAM memory, except the
mpul memory, 15 empty
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Moreover A is a tiptop algorithm of delay D(n) and space S(n) if for each y;,
i=1,...,n, time(phase(y;)) < D(|y;|) and space(phase(y;)) < S(|yi])-

The following lemma concerns the complexity of the enumeration problem
A ® B. It uses in an essential manner an efficient representation of the outputs.
A set S will be represented by a binary tree whose leaves are labeled by the
elements of S. The size of this tree is linear in the size of S. A k-tuple of sets S
is represented by an array of binary trees. Using these representations, a disjoint
union of two sets A and B can be done in constant time (by creating a new
node which is connected to the roots of trees) without side effect and hence the
combination S @ S’ of two k-tuples of sets S and S’ can also be computed in
constant time.

Lemma 4. Let A and B be two problems of enumeration of k-tuples of sets for
which A ® B can be defined. Assume that A (resp B) can be enumerated by a
tiptop algorithm @ (resp ¢p) with delay f(S) and in space g(S) then A® B can
be computed by a tiptop algorithm such that each tuple S = Sy ® Sy is produced
with delay f(S1) + f(S2) + O(1) and in space g(S1) + g(S2) + O(1).

Lemma 5. Let A and B be two enumeration problems such that Bo A is defined.
Assume that A can be enumerated by a tiptop algorithm ¢4 with constant delay
and in constant space and that B can be enumerated by a tiptop algorithm ¢p
such that an element y is produced with delay f(y) and in space g(y). Then Bo A
s enumerable by a tiptop algorithm wpoa such that an element y is produced with
delay f(y) + O(1) and in space g(y) + O(1).

Lemma 6. There is an algorithm which given a X-tree T and a query p(X)
represented by an automaton I' = (X x {0,1}*,Q,q0,6,Q;), computes p(|T|)
with a precomputation in time O(|Q[3|T), with delay O(|S|) and in space O(|S]).

Proof. We give first the preprocessing phase called precomp:

compute the set PUSEFUL C D X @

compute the function PPAIR : D x Q — P(Q?)

compute PINIT : Leaves(T) x Q — P({0,1}*\ {0}*)

compute the transition-tree T'

compute a postfix order o of T?

order PUSEFUL with respect to o

7. compute first(z,q) and last(z, q) for each configuration (z, q)

ST o=

the set PUSEFUL can be computed in time O(|Q||T'|) using a bottom-up approach.
Each set PPAIR(7, ¢) contains at most |Q|? elements per configuration and can be
computed in time O(|Q|?). Therefore, the total time for computing the function
PPAIR is O(|Q|?|T’|). The function PINIT can be computed in O(2¥|Q||T|). Lines
4,7 can easily be done in O(|Q||T|) by bottom up approach. A postfix order
can be computed in linear time O(|T?|) = O(|Q||T|) by depth first search. We
conclude that the time and space of the precomputation is O(|Q|3|T).

The enumeration phase is described in the procedure eval. The correctness
is immediate. Clearly, with the below precomputation, the problems pfinal, ac-
cessible, pair and sleaf are computable with constant delay. We will prove by
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Algorithm 1. eval(T, X, T)

Require: a Y-tree T, an automaton I, data I computed by precomp
Ensure: the set of tuples S such that I" accepts (7, 5)
1: output #

2: start the procedure senum

3: while senum has not finished do
continue ¢ until the next tip
Z := output of senum
output the tuple of predicates pointed by Z
continue senum until the next top
output #

9: end while ~
10: if I" accepts (T, 0) then
11:  output 0
12: output #
13: end if

a simultaneous induction that each element of sactive(z,q) is produced with
a delay a(4]S| — 2) and each element of suseful(x, q) is produced with a delay
a(4|S] - 3).

Let (z,q) be a potentially useful configuration. It is easily seen that the prop-
erty holds if z is a leaf. Assume that x is an internal node with first and second
children y; and yz. Consider a tuple S produced by suseful(z, ¢) with a delay d.
Assume that S = S; @ Sy and S; (resp S») is produced by sactive(ys, q1) (resp
sactive(ys, g2)) with delay dy (resp da).

d<dy+ds+0(1) by Lemmas 4 and 5
< a(4|S1] — 2) + a(4]S2| — 2) + O(1) by the induction hypothesis
<a(4|S] -3)—a+0(1) for large enough a
< a(4|S] - 3)

Let (x,q) be a potentially active configuration. Let S be a tuple produced by
sactive(z, ¢) with a delay d. Assume that S is produced by suseful(z’, ¢’) with a
delay d'.

d<d+0(1)
< a(4|S| —3) + O(1) by the induction hypothesis
< a(4]S|-2) for large enough a

A similar proof can be done for space complexity.

Remark: Although the complexity of the precomputation highly depends on the
size of the automaton, the enumeration phase has a delay which depend neither
on the size of T' nor on the size of the automaton.

Theorem 2. The problem Query(MSO, s, X-TREES) is LINEAR-DELAY/;;,

Proof. We give the complete algorithm:
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Data: An MSO[rs]-formula ¢(X,y) and a 7-tree T

1. Compute a formula ¢’(X,Y) without quantifier-free first-order variables that
is "equivalent” to ¢

2. Compute a (¥ U {@})-tree T” and a formula ¢”(X) (as described in Lemma
)

3. Compute a X’'-tree automaton I" associated to ¢ i.e such that (Ts € L(I")
if and only if (7, S) = ¢"(X) (X' = (Y u{@}) x {0,1}¥)

4. Perform precomputation phase precomp

5. Call eval(I,T)

Corollary 1. Let X be an alphabet and ¢ be an MSO-[ts] formula without
second-order free variable, then the evaluation @ on X-trees can be computed
with linear precomputation and constant delay.

4 Direct Generation of the i** Solution

We are interested, in this section, in producing directly the i*" solution of a
query.

Equations 1’,2’,3” 4’ give us a characterization of senum which is the set of
all solution tuples (except the empty tuple). We want to view all sets (senum,
sactive(x, q), ...) as ordered lists. This can be done as follows:

— We give an arbitrary ordering for all finite sets PPAIR(z, ¢), PFINAL, PINIT(x, q)

— We consider all unions as ordered unions

— For any sets of k-tuples of sets A and B, C = A® B is viewed as a lexico-
graphic product (i.e. if C[z] = Aly] ® Blz] and C[z'] = Aly'] ® B[z'] then
x <2’ if and only if (z,y) <jex (v',2') 3)

We denote
i—1

sumuseful(7) = Z |suseful (PUSEFULIk])|
k=0

sumpair(z, g, 1) = Z |sactive(y1, q1)| X [sactive(ya, g2)
k=0...i—1
(q1,92)=PPAIR(z,q) [k]
i—1
sumfinal(z, ¢,1) = Z |sactive(root(T"), PFINAL[K])]
k=0
We are interested in finding, given an index i, the tuple S = senuml[i]. This
can be done by using the following lemma.

3 Here and below, A[i] denotes the i*" element of the ordered list A (A[0] is the first
element).
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Lemma 7. 1. Let A and B be two ordered sets of k-tuples of sets and C =
A ® B then C[i] = Ala] ® B[b] where a and b are the quotient and the
remainder of the integer division of i by |B|.

2. Let i < |senum|. Then

senuml|i] = sactive(root(T'), PFINAL[j])[i — sumuseful(j))

where j is the greatest k such that sumfinal(k) < 1.
3. Let (z,q) be a potentially active configuration and i < |sactive(zx,q)|. Then

sactive(z, q)[1] = suseful(PUSEFUL[j]) [i+ sumuseful( first(z, q) )—sumuseful(j)]

where j be the greatest k such that sumuseful(k) < sumuseful( first(z,q))+1.
4. Let x be an internal node with children y1 and y2. Let i < |suseful(x,q)].
Then
suseful(z, q)[i] = sactive(y1, q1)[a] ® sactive(ya, g2)[0]

where j is the greatest k such that sumpair(z,q, k) < i, (q1,q2) =
PPAIR(Z, q)[j] and a,b are the quotient and the remainder of the integer di-
vision of i — sumpair(x, q,j) by |sactive(ys, q2)].
Theorem 3. Given a fized MSO|[rs: |-formula (X) and a X-tree T, we can do a
precomputation in time O(|T|) and then produce the i'" solution S (with respect
to the below order) in time O(|S|log(|T)).

Proof. (sketch) The precomputation is an extension of the precomputation for
the evaluation problem. In addition, we need to compute sumuseful, sumpair,
sumfinal and the cardinality of suseful(z, ¢) and sactive(z, q) for each configura-
tion (z, ¢). This can be done in linear time by bottom-up approach. An algorithm
to find the i*" element is a straightforward application of Lemma 7. We proceed
in a recursive way. We need to find given an integer = the greatest element lesser
than z in a non decreasing list, this can be done in time O(log(|T|)) by binary
search. As the number of recursive calls is linear in the size of the output, we
stay within the desired time bound.

5 Structures of Bounded Treewidth

The treewidth of a structure S is the least k such that S admits a tree decom-
position of width & (for more details, see [3]).

Lemma 8. [2] For any fized k, there is an algorithm which given a MSO formula
@ computes a formula ¢’ and an algorithm which given a structure S and a tree
decomposition of S of width k, computes in linear time a X-tree T, such that

o(S) = ¢'(T)
Bodlaender [4] gives an algorithm which given a structure S and a fixed k com-

putes a tree-decomposition of S of width k if it exists in linear time in the size
of the S.

Corollary 2. Let C be a class of T-structures of bounded treewidth, then QUERY
(MSO, 7, C) is LINEAR-DELAY ;, -
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Abstracting Allocation
The New new Thing

Nick Benton
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Abstract. We introduce a Floyd-Hoare-style framework for specifica-
tion and verification of machine code programs, based on relational para-
metricity (rather than unary predicates) and using both step-indexing
and a novel form of separation structure. This yields compositional, de-
scriptive and extensional reasoning principles for many features of low-
level sequential computation: independence, ownership transfer, unstruc-
tured control flow, first-class code pointers and address arithmetic. We
demonstrate how to specify and verify the implementation of a simple
memory manager and, independently, its clients in this style. The work
has been fully machine-checked within the Coq proof assistant.

1 Introduction

Most logics and semantics for languages with dynamic allocation treat the al-
locator, and a notion of what has been allocated at a particular time, as part
of their basic structure. For example, marked-store models, and those based on
functor categories or FM-cpos, have special treatment of locations baked in, as
do operational semantics using partial stores, where programs ‘go wrong’ when
accessing unallocated locations. Even type systems and logics for low-level pro-
grams, such as TAL [14], hardwire allocation as a primitive.

For high-level languages such as ML in which allocation is observable but
largely abstract (no address arithmetic, order comparison or explicit dealloca-
tion), building ‘well-behaved’ allocation into a model seems reasonable. But even
then, we typically obtain base models that are far from fully abstract and have to
use a second level of non-trivial relational reasoning to validate even the simplest
facts about encapsulation.

For low-level languages, hardwiring allocation is less attractive. Firstly, and
most importantly, we want to reason about the low-level code that actually im-
plements the storage manager. Secondly, in languages with address arithmetic,
such as the while-language with pointers used in separation logic, one is led to
treat allocation as a non-deterministic primitive, which is semantically problem-
atic, especially if one tries to reason about refinement, equivalence or imprecise
predicates [23,13]. Finally, it just doesn’t correspond to the fact that ‘machine
code programs don’t go wrong’. The fault-avoiding semantics of separation logic,
for example, is prescriptive, rather than descriptive: one can only prove anything

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 182-196, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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about programs that never step outside their designated footprint, even if they
do so in a non-observable way.!

We instead start with a completely straightforward operational semantics for
an idealized assembly language. There is a single datatype, the natural numbers,
though different instructions treat elements of that type as code pointers, heap
addresses, integers, etc. The heap is simply a total function from naturals to
naturals and the code heap is a total function from naturals to instructions.
Computed branches and address arithmetic are perfectly allowable. There is no
built-in notion of allocation and no notion of stuckness or ‘going wrong’: the
only observable behaviours are termination and divergence.

Over this simple and permissive model, we aim to develop semantic (defined
in terms of observable behaviour) safety properties, and ultimately a program
logic, that are rich enough to capture the equational semantics of high-level types
as properties of compiled code and also to express and verify the behavioural
contracts of the runtime systems, including memory managers, upon which com-
piled code depends.

Our approach is based on four technical ideas. Firstly, following the interpre-
tation of types as PERs, we work with quantified binary relations rather than the
unary predicates more usual in program logics. Program properties are expressed
in terms of contextual equivalence, rather than avoidance of some artificial stuck
states. Secondly, we use a perping operation, taking relations on states to or-
thogonal relations on code addresses, to reason about first-class code pointers.
Thirdly, we reason modularly about the heap in a style similar to separation
logic, but using an explicit notion of the portion of the heap on which a relation
depends. Finally, we reason modularly about mutually-recursive program frag-
ments in an assume/guarantee style, using a step-indexing technique similar to
that of Appel et al [5,6,3] to establish soundness.

In this paper, we concentrate on the specification and verification of an ex-
tremely basic memory allocation module, and an example client. Although the
code itself may be simple, the specifications and proofs are rather less so, and
provide a non-trivial test case for our general framework, as well as constituting
a fresh approach to freshness.

Managing the mind-numbing complexity and detail of specifications and proofs
for machine code programs, not to mention keeping oneself honest in the face of
changing definitions, seems to call for automated assistance. All the definitions
and results presented here have been formalized and checked using the Coq proof
assistant.

! For example, skip and [10] := [10] are, under mild assumptions, observationally
equivalent, yet do not satisfy exactly the same set of triples. One might reasonably
claim that machine code programs do go wrong — by segfaulting — and that this
justifies faulting semantics and the use of partial stores. But stuck states in most
operational semantics, even for low-level code, do not correspond exactly to the
places in which segfaults might really occur, and we’d rather not assume or model
anything about an operating system for the moment anyway.
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2 The Machine

Our idealized sequential machine model looks like:

s € S def N—N states

l,m,n,be N naturals in different roles

d
p € Programs o] N — Instr programs

(p|s|l) € Configs e Programs x S x N

The instruction set, Instr, includes halt, direct and indirect stores and loads,
some (total) arithmetic and logical operations, and conditional and unconditional
branches.? The semantics is given by an obvious deterministic transition relation
(p|s|l) — (p|s’|l') between configurations. We write (p|s|l) |} if there exists n,l’ s’
such that (p|s|l) =" (p|s'|l') with p(I') = halt, and (p|s|l) 1} if (p|s|l) —*.

The major idealizations compared with a real machine are that we have
arbitrary-sized natural numbers as a primitive type, rather than fixed-length
words, and that we have separated code and data memory (ruling out self-
modifying code and dynamic linking for the moment). Note also that we do not
even have any registers.

3 Relations, Supports and Indexing

We work with binary relations on the naturals, N, and on the set of states, S, but
need some extra structure. Firstly, the reason for using relations is to express
specifications in terms of behavioural equivalences between configurations:

(plslh) 4 = @Is'I')

and the relations on states and naturals we use to establish such equivalences
will generally be functions of the programs p and p’ (because they will refer to
the sets of code pointers that, in p and p’, have particular behaviours). Secondly,
to reason modularly about mutually recursive program fragments, we need to
restrict attention to relations satisfying an admissibility property, which we cap-
ture by step-indexing: relations are parameterized by, and antimonotonic in, the
number of computation steps available for distinguishing values (showing they’re
not in the relation). Formally, an indexed nat relation, is a function

r: Programs x Programs — N — P(N x N)

such that (r (p,p") k) C (r (p,p’) j) whenever j < k.

For state relations, we also care about what parts of the state our relations de-
pend upon. Separation logic does this implicitly, and sometimes indeterminately,
via the existential quantification over splittings of the heap in the definition of

2 The Coq formalization currently uses a shallow embedding of the machine semantics,
so the precise instruction set is somewhat fluid.
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separating conjunction. Instead, we work with an explicit notion, introduced in
[9], of the support of a relation. One might expect this to be a set of locations,
but the support is often itself a function of the state (think, for example, of the
equivalence of linked lists). However, not all functions S — P(N) make sense
as supports: the function itself should not depend on the contents of locations
which are not in its result.®> Formally, we define an accessibility map to be a
function A : S — P(N) such that

Vs,s'. s ~as) 8 = A(s') = A(s)

where, for L C N and s, € S, we write s ~p, s’ to mean VI € L.s(l) = s'(1).
Accessibility maps are ordered by A C A" <= Vs.A(s) C A'(s). Constant
functions are accessibility maps, as is the union AU A’ of two accessibility maps,
where (AUA’)(s) = A(s)UA’(s). Despite the name, accessibility maps are about
relevance and not reachability. Indeed, reachability makes little sense in a model
without an inherent notion of pointer.
A supported indexed state relation R is a triple (|R|, Ar, AR) where

|R| : Programs x Programs — N — P(S x S)

satisfies (|R| (p,p") k) € (|R| (p,p’) j) for all (j < k), Ar and A, are accessibility
maps and for all 51 ~4.(s,) 52 and s} ~AL(s)) sh,

(s1,81) € [R[(p,p) k= (s2,55) € |R| (p.p) k-

We often elide the | - |. The constantly total and empty state relations are each
supported by any accessibility maps. The separating product of supported in-
dexed relations is given by

Ry ® Ry = (|R1 ® Rz|, Ar, U AR,, AlRl UA/RZ) where
[R1 ® Ro| (p,p) k = (|Ra| (p,p') k) N (|R2| (p,p') k) N
{(s,8") | A, (s) N AR,(s) =0 A AR, (s") N AR, (s') = 0}
This is associative and commutative with the constantly total relation with

empty support, Ty, as unit. The partial order R; < Ro on state relations is
defined as

V(s,s') € [Ra]. ((5,8) € [R2|) A (AR, (5) € AR, (5)) A (AR, (s") € AR, (s))

which has the property that if Ry < Rs then for any Ry, |R1 ® R;| C |R2 ® Ry|.
If R is a (supported) indexed state relation, its perp, R", is an indexed nat
relation defined by:

R (p,p') k= {(LV) |V < k.¥(s,8") € (R(p.1) ).

(<p,8,l> ‘U’j - < / l/> ll)
(s, ) by = (p,s, 1) 1)}

3 In other words, the function should support itself.
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where {}; means ‘converges in fewer than j steps’. Roughly speaking, R relates
two labels if jumping to those labels gives equivalent termination behaviour
whenever the two initial states are related by R; the indexing lets us deal with
cotermination as the limit (intersection) of a sequence of k-step approximants.

If ¢ € N x N, write ¢ for the indexed nat relation A(p, p’).A\k.¢, and similarly
for indexed state relations. If L C N, Ay is the accessibility map As.L. We
write T}, for the supported indexed state relation (S x S, Ay, Ar) and write sets
of integers {m,m + 1,...,n} just as mn. If r is an indexed nat relation and
n,n’ € N, write (n,n’ & r) for the supported indexed state relation

Ap p')-Ak. ({(s,s) | (s(n), ' (n)) € r(p,p) K}, As{n}, As.{n'})

relating pairs of states that have values related by r stored in locations n and
n’. We write the common diagonal case (n,n = r) as (n +— 7). For M a program
fragment (partial function from naturals to instructions) define

Fus1:RTE vpp Dk (L) € (RT (p.p) k)

where the quantification is over all (total) programs extending M. We are only
considering a single M, so our basic judgement is that a label is related to itself.
More generally, define 1; : R;r EM>1:RT to mean

Vp,p' D MYk (Vi.(l,1;) € (R (p,p)) k) = ((1,)) € (R (p,p)) k+1))

i.e. for any programs extending M and for any k, if the hypotheses on the labels
l; are satisfied to index k, then the conclusion about [ holds to index &k + 1.

4 Specification of Allocation

The machine model is very concrete and low-level, so we have to be explicit
about details of calling conventions in our specifications. We arbitrarily designate
locations 0 - 9 as register-like and, for calling the allocator, will use 0 - 4 for
passing arguments, returning results and as workspace. An allocator module is
just a code fragment, M,, which we will specify and verify in just the same way as
its clients. There are entry points for initialization, allocation and deallocation.
The code at label init sets up the internal data structures of the allocator.
It takes a return address in location 0, to which it will jump once initialization
is complete. The code at alloc expects a return address in location 0 and the
size of the requested block in location 1. The address of the new block will be
returned in location 0. The code at dealloc takes a return address in 0, the size
of the block to be freed in 1 and the address of the block to be freed in 2.
After initialization, the allocator owns some storage in which it maintains its
internal state, and from which it hands out (transfers ownership of) chunks to
clients. The allocator depends upon clients not interfering with, and behaving
independently of, both the location and contents of its private state. In par-
ticular, clients should be insensitive to the addresses and the initial contents
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of chunks returned by calls to alloc. In return, the allocator promises not to
change or depend upon the contents of store owned by the client. All of these
independence, non-interference and ownership conditions can be expressed using
supported relations. Furthermore, this can be done extensionally, rather than in
terms of which locations are read, written or reachable.

There will be some supported indexed state relation R, for the private in-
variant of the allocator. The supports of R, express what store is owned by
the allocator; this has to be a function of the state (rather than just a set of
locations), because what is owned varies as blocks are handed out and returned.
One should think of |R,| as expressing what configurations of the store owned
by the allocator are valid, and which of those configurations are equivalent.

When init is called, the allocator takes ownership of some (infinite) part of
the store, which we only specify to be disjoint from locations 0-9. On return,
locations 0-4 may have been changed, 5-9 will be preserved, and none of 1-9 will
observably have been read. So two calls to init yield equivalent behaviour when
the return addresses passed in location 0 yield equivalent behaviour whenever
the states they’re started in are as related as init guarantees to make them.
How related is that? Well, there are no guarantees on 0-4, we’ll preserve any
relation involving 5-9 and we’ll establish R, on a disjoint portion of the heap.
Thus, the specification for initialization is that for any nat relations rs,rg,. . . ,r9,

9 9 T
EM, > init: ((0 — (R ® Toa ® ® (i Ti))T> ® ® (i Tz)) (1)

=5 i=5

When alloc is called, the client (i.e. the rest of the program) will already have
ownership of some disjoint part of the heap and its own invariant thereon, R..
Calls to alloc behave equivalently provided they are passed return continuations
that behave the same whenever their start states are related by R., R, and in
each state location 0 points to a block of memory of the appropriate size and
disjoint from R, and R,. More formally, the specification for allocation is that
for any n and for any R,

=M, > alloc : (Raparms(n, Ra, Ra) © Toa @ Re @ Ry) (2)
where
Raparms (0 Ras Re) = (0= (Raret(n) © T1a © Re® Ra)") & (1 {(n,m)} ) )
and  Raper(n) = ({(5,5) 5(0) > 9 A 5/(0) > 9}, Aupec(n), Aaper(n))
Agrer(n) = As.{0} U {5(0),...,s(0) +n — 1}

Rgret guarantees that the allocated block will be disjoint from the pseudo-
registers, but nothing more; this captures the requirement for clients to behave
equivalently whatever block they’re returned and whatever its initial contents.
Agret includes both location 0, in which the start of the allocated block is re-
turned, and the block itself; the fact that this is tensored with R, and R, in the
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precondition for the return address allows the client to assume that the block
is disjoint from both the (updated) internal datastructures of the allocator and
the store previously owned by the client. We can avoid saying anything explicit
about preservation of locations 5 to 9 here because they can be incorporated
into R..

When dealloc is called, R, will hold and the client will have an invariant R.
that it expects to be preserved and a disjoint block of store to be returned. The
client expresses that it no longer needs the returned block by promising that
the return address will behave equivalently provided that just R. and R, hold.
Formally, for any R, and n,

= M,>dealloc : ((O — (Toa @ R, ® Ra)T) ® (1 — W) ® T34 ® be(n))‘r
3)

where
Ryb(n) ( )>9As(2) > 9}, Ap(n), Aﬂ,(n))
App(n) = {2} U {8( ) ;8(2) +n—1}

Writing the relations on the RHSs of (1), (2) and (3) as 7in(Ra,75,.-.,79),
Tal(Ra,n, Re) and r4.(Rq,n, R.), respectively, the whole specification of an al-
locator module is therefore

Ra, ): Ma > (lnlt : VT57 ey T9. rin(Rau LT 7T9))
A(alloc : Vn.VR..7qi(Rq,n, Re)) (4)
A(dealloc : Vn.VR..74e(Ra,n, Re))

Note that the existentially-quantified R, is scoped across the whole module
interface: the same invariant has to be maintained by the cooperating imple-
mentations of all three operations, even though it is abstract from the point of
view of clients.

Checking that all the things we have assumed to be accessibility maps and
supported relations really are is straightforward from the definitions.

5 Verification of Allocation

We now consider verifying the simplest useful allocation module, M,, shown in
Figure 1. Location 10 points to the base of an infinite contiguous chunk of free
memory. The allocator owns location 10 and all the locations whose addresses
are greater than or equal to the current contents of location 10. Initialization
sets the contents of 10 to 11, claiming everything above 10 to be unallocated,
and returns. Allocation saves the return address in location 2, copies a pointer
to the next currently free location (the start of the chunk to be returned) into 0,
bumps location 10 up by the number of locations to be allocated and returns to
the saved address. Deallocation is simply a no-op: in this trivial implementation,
freed store is actually never reused, though the specification requires that well-
behaved clients never rely on that fact.
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init : [10] « 11 // set up free ptr
init +1: jmp [0] // return
alloc : [2] < [0] // save return address
alloc +1: [0] « [10] // return value = old free ptr
alloc + 2 : [10] « [10] + [1] // bump free ptr by n
alloc + 3 : jmp [2] // return to saved address
dealloc : jmp [0] // return (!)

Fig. 1. The Simplest Allocator Module, M,

Theorem 1. The allocator code in Figure 1 satisfies the specification, (4), of
the previous section. O

For this implementation, the relation, R,, witnessing the existential in the spec-
ification is just
R ™ ({(s,/) | (s(10) > 10) A (/(10) > 10)}, Aa, A,)

where A, is As.{10} U {m|m > s(10)}. The only invariant this allocator needs is
that the next free location pointer is strictly greater than 10, so memory handed
out never overlaps either the pseudo registers 0-9 or the allocator’s sole bit of
interesting private state, location 10 itself. A, says what storage is owned by the
allocator.

The proof of Theorem 1 is essentially forward relational Hoare-style reason-
ing, using assumed separation conditions to justify the framing of invariants. In
particular, the prerelation for alloc lets us assume that the support A, of R, is
disjoint from both {0,...,4} and A, in each of the related states (s, s’) in which
we make the initial calls. Since the code only writes to locations coming from
those latter two accessibility maps, we know that they are still related by R.
even though we do not know anything more about what R, is. More generally,
we have the following reasoning principle:

Lemma 1 (Independent Updates). For any p, p', k, n, n', v, V', o1, Tnew,
Riny, s, 3/;

(va/) € (Thew (pap/) k) and (s, 5/) € ((n, n' = Told) ® Riny) (pap/) k
implies (s[n— v], '[n' —V']) € ((n,n' B Tnew) ® Riny) (0,p') k.

Proof. By assumption, the prestates s and s’ are related by |R;n,|, and the
supports Ainy(s) and A, . (s") do not include n and n', respectively. Hence, by
the self-supporting property of accessibility maps, Ajn,(s[n — v]) = Aino(9),
and similarly for A}, . Thus s[n — v] ~a, () s and s'[n" — V'] ~a0 () &,
so the updated states are still related by |R;,,| by the saturation property of
supported relations, and the supports of the tensored relations in the conclusion

are still disjoint. a
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We also use the following for reasoning about individual transitions:

Lemma 2 (Single Steps). For all p, p', k, Rpre, lpre; Uy, if for all j < k and
Jor all (Sprea S;)’l‘e) € (Rpre (p,p") J)
<p‘8p7’€|lp7“e> - <p|SPOSt‘lPOSt> and <p/|8;re|l;n"e> - <p/‘82>ost‘l;>ost>

implies there exists an Rpos¢ such that

(Sposta Sé;ost) S (Rpost (p,p/)j) and (lpost7 ;;ost) S (Rpost (]%Pl) J)T

then (lp’l‘e7 l;re) S (Rpre (pvp/) k)T =

For straight-line code that just manipulates individual values in fixed locations,
the lemmas above, together with simple rules of consequence involving <, are
basically all one needs. The pattern is that one applies the single step lemma to a
goal of the form (Ipre,l,..) € (Rpre (p,p") k)T , generating a subgoal of the form
‘transition implies exists Rpos¢ such that post states are related and (Ipost, l;ost)
are in R;,rost’. One then examines the instructions at l,.. and [,.., which defines
the possible post states and values of s+ and l;,ost. One then instantiates Rpost,
yielding one subgoal that the post states (now expressed as functions of the
prestates) are related and one about (I,0st, l;ost). In the case that the instruction
was an update, one then uses the independent update lemma to discharge the
first subgoal, leaving the goal of proving a perp about (lpost, l,s;), for which the
pattern repeats. Along the way, one uses consequence to put relations into the
right form for applying lemmas and assumptions.

In interesting cases of ownership transfer, the consequence judgements one
has to prove require splitting and recombining relations that have non-trivial
supports. This typically involves introducing new existentially quantified logi-
cal variables. For example, after the instruction at alloc+1 we split the state-
dependency of the support of R, by deducing that there exist b,b’ € N, both
greater than 10, such that the two intermediate states are related by

(0 — {b, b/}> ® (10 = {b7 bl}) ® (S X Sv Aold7 Agld) & (S X Sa AneuH Aiww) Q-

where Agq(s) ={m|m>b+n}, A (') ={m|m >V +n}, Anew(s) ={m|
b<m<b+n}and 4., () ={m |V <m <V +n}. The first and fourth of
these then combine to imply Rgret(n), so after the update at alloc+2 the states

are related by
Raret(n) @ (10 = {b+ 1,1 +1}) @ (8 X 8, Agia, Alyg) @+

the second and third of which then recombine to imply R, again, eliminating b
and b’ and establishing the precondition for the return jump at alloc+3.

6 Specification and Verification of a Client

We now specify and verify a client of the allocator, using the specification of
Section 4. Amongst other things, this shows how we deal modularly with linking,
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recursion and adaptation. The client specification is intended as a very simple
example of how one might express the semantics of types in a high-level language
as relations in our low-level logic, expressing the behavioural contracts of code
compiled from phrases of those types. In this case, the high-level language is
an (imaginary) pure first-order one that, for the purposes of the example, we
compile using heap-allocated activation records.

We concentrate on the meaning of the type nat — nat. From the point of
view of the high-level language, the semantics of that type is something like the
predomain N — N, or relationally, a PER on some universal domain relating
functions that take equal natural number arguments to equal results of type
‘natural-or-divergence’. There are many mappings from such a high-level se-
mantics to the low-level, reflecting many different correct compilation schemes.
We'll assume values of type nat are compiled as the obviously corresponding
machine values, so the interpretation [nat] is the constantly diagonal relation
{(n,n) | n € N}.

For functions we choose to pass arguments and return results in location 5,
to pass return addresses in 6, to use 7 to point to the activation record, and 0-4
as workspace.? Since functions call the allocator, they will also explicitly assume
and preserve R,, as well as some unknown frame R, for the invariants of the rest
of the program. The allocator’s invariant is abstract from the point of view of
its clients, but they all have to be using the same one, so we parameterize client
specs by the allocator’s invariant. This leads us to define [nat — nat] (R,) as
the following indexed nat relation:

To4a @ (5 — [nat]) ® (77— 17) ® Re ® Ry ®

T
VEeVrr. ( (6 — (Toa ® (5+— [nat]) @ Re @ R, @ Ts @ (7 +— r7))T> >
which one can see as the usual ‘equal arguments to equal results’ logical rela-
tion, augmented with extra invariants that ensure that the code respects the
calling convention, uses the allocator properly and doesn’t observably read or
write any storage that it shouldn’t. Although the high-level type is simple, the
corresponding low-level specification is certainly non-trivial.

As a concrete example of something that should meet this spec, we (pre-
dictably) take an implementation, My, of the factorial function, shown in Fig-
ure 2. The factorial code is mildly optimized: it calls the allocator to allocate its
activation record, but avoids the allocation if no recursive call is needed. After
a recursive call, the activation record is deallocated using a tail call: dealloc
returns directly to the caller of fact. The ability to reason about optimized code
is a benefit of our extensional approach compared with more type-like methods
which assume code of a certain shape.

The result we want about the factorial is that it satisfies the specification
corresponding to its type whenever it is linked with code satisfying the specifi-
cation of an allocator. Opening the existential package, this means that for any

4 This differs from the allocator’s calling convention because we need to call the allo-
cator to get some space before we can save the parameters to a function call.
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fact : brz [5] (fact+17) // jump to fact+17 if [5]=0
fact+ 1: [1] <- 3 // size of activation record
fact+ 2: [0] <- (fact+4) // return address for alloc
fact+ 3: jmp alloc // allocate activation record
fact+ 4: [[0]] <- [5] // copy arg to frame[0]

fact+ 5: [[0]+1] <- [6] // copy ret addr to frame[1]
fact+ 6: [[0]+2] <- [7] // copy old frame ptr to frame[2]
fact+ 7: [7] <- [0] // new frame ptr in 7

fact+ 8: [5] <- ([5]-1) // decrement arg

fact+ 9: [6] <- (fact+11l) // ret addr for recursive call
fact+10: jmp fact // make recursive call

fact+11: [5] <- ([6]1*[[71]) // return value = (fact (n-1))*n
fact+12: [0] <- [[7]+1] // ret addr for dealloc tail call
fact+13: [2] <- [7] // arg for call to dealloc
fact+14: [7] <- [[7]+2] // restore old frame ptr

fact+15: [1] <- 3 // size of block for dealloc
fact+16: jmp dealloc // dealloc frame and tail return
fact+17: [5] <- 1 // return value = 1

fact+18: jmp [6] // return

Fig. 2. Code for the Factorial Function, My

M, satisfying (4), there’s an R, such that
E (Mg UMy) &> (fact : [nat — nat](R,)) A (alloc : Yn.VR.. 741 (Ra,n, Re)) A - ..

which is a consequence of the following, quite independent of any particular M,:

Theorem 2. For any R,,

init :Vrs,...,79.Tin(Ra, 75, ..., 79),
alloc: Vn.VR..7q(Ra,n, Re), = My > fact : [nat — nat](R,)
dealloc : Vn.VR..74e(Ra,n, R.) O

This is another Hoare-style derivation, mostly similar to that of Theorem 1. Prov-
ing the calls, including the recursive one, requires the universal quantifications
over R., n and 77, occurring in the specifications of alloc, dealloc and fact,
to be appropriately instantiated (‘adapted’). For example, the instantiation of
R, for the recursive call at label fact+10 is

R, @ (b,V' & [nat])
©(b+ 1,0/ + 1 ((5— [nat]) ® Toa @ R, © R, @ Ts @ (T — 14))T)
ROB+2,0+2=174)

where R/, and 77 were the instantiations of the outer call, and b and b’ are logical
variables standing for the addresses returned by the previous related calls to the
allocator at fact+3. This clearly expresses how the recursive call has to preserve
whatever the outer one had to, plus the frame of the outer call, storing the outer
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call’s argument and return address and the outer call’s caller’s frame pointer
from location 7.

Recursion is dealt with in the proof of Theorem 2 as one would expect, by
adding fact : [nat — nat](R,) to the context. This is sound thanks to our use
of indexing and interpretation of judgements:

Lemma 3 (Recursion). For any I', I, R and M, if I, | : RT =M>1: RT then
F'EM>1:R". O

Lemma 3, proved by a simple induction, suffices for first-order examples but only
involves statically known labels.> We will discuss ‘recursion through the store’
in detail in future work, but here give a trivial example to indicate that we
already have enough structure to deal with it. Consider independently verifying
the following code fragments, assuming that wantzero : (1 — {(0,0)})"

silly : brz [1] wantzero knot : [0] <- silly
silly+1 : [1] <- [1]-1 knot+1 : jmp silly
silly+2 : jmp [O]

To show knot : (1+— [[nat}])T7 there are various choices for the specification
assumed for silly (and proved of its implementation). An obvious one is that
si1ly ezpects to be passed itself in 0, but this may be an overspecification. Alter-
natively, we can use the recursive specification pr. (0 — 7) @ (1 — [nat])) ", the
semantics of which is given by well-founded induction: observe that the meaning
of RT at index k only depends on R at strictly smaller j. In general, we have a
fixpoint equation

pr. (R[r]) " = (A(p,p’)NﬁR pr (R (p,p) k] (p,7) k)T

letting us prove the following two judgements, which combine to give the result
we wanted about knot:

Theorem 3

1. wantzero : (1 — {(0, O)}>—r = Mgy > silly : pr. (0—7r) @ (1 +— [nat])) "
2. silly: pr. (0 — ) @ (1 — [nat])) & Mot > knot : (1 — [nat]) " |

7 Discussion

As we said in the introduction, this work is part of a larger project on relational
parametricity for low-level code, which one might characterize as realistic real-
izability.5 It should be apparent that we are drawing on a great deal of earlier
work on separation logic [21], relational program logics [19,1,7,23], models and

® This is equivalent to the more symmetric linking rule of our previous work [8].
5 Modulo the use of unbounded natural numbers, etc. Our computational model is
clearly only ‘morally’ realistic, but it’s too nice a slogan not to use...
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reasoning principles for dynamic allocation [18,20,9], typed assembly language
[14], proof-carrying code [15], PER models of types [2], and so on.

Two projects with similar broad goals to ours are the FLINT project at Yale
[11] and the Foundational Proof-Carrying Code project at Princeton [4]. The
Yale group started with a purely syntactic approach to types for low-level code,
and are now combining first-order Hoare-style reasoning using a semantic conse-
quence relation within a more syntactic framework. This is argued to be simpler
than techniques based on sophisticated constructions such as indexing, but the
treatment of code pointers in [16] seems no less complex, and possibly less useful,
than that of the present work. As the syntactic approach never says what types
(or higher-order assertions) are supposed to ensure (what they actually mean),
it seems more difficult to use it to combine proofs generated from different type
systems or compilers, link in hand-written and hand-proved fragments or prove
optimizations. The Princeton project takee a semantic approach, which is much
closer to ours (as we’ve said, the step-indexing idea that we use comes from work
on FPCC), but is still a fixed type system restricted to talking about a single
form of memory safety rather than a general logic. FPCC uses a hardwired and
rather limited form of allocation and has no deallocation at all [10].

There are other mechanized proofs of storage managers, including one by
Yu et al. [24], and one using separation logic by Marti et al. [12]. These both
treat more realistic implementations than we do here, but establish intensional
‘internal’ correctness properties of the implementations, rather than the more
extensional and abstract specification used here. In particular, note that our
specification uses no ‘model variables’ for recording the history of allocations.

Note that we make explicit use of second-order quantification over invariants,
such as R., in our specifications and proofs (this is rather like row-polymorphism
in record calculi). In separation logic, by contrast, the tight interpretation of pre-
conditions means that { P} C' {Q} is semantically equivalent to VI.{P*1} C {Q
I} so universal quantification over predicates on store outside the footprint of
a command can be left implicit, but is still exploitable via the frame rule. Our
use of explicit polymorphism is arguably more primitive (especially since pro-
cedures and modules require second order quantification anyway), doesn’t rule
out any programs and is closed under observations. On the other hand, the more
modal-style approach of separation logic is simpler for simple programs and its
stronger intensional interpretation of separation, whilst being more restrictive,
has the significant advantage over ours that it extends smoothly to a concurrent
setting.

The proof scripts for the general framework plus the verification of the al-
locator code and the factorial client currently total about 8,500 lines, which is
excessively large. However, this really reflects my own incompetence with Coq,
rather than any inherent impracticality of machine-checked proofs in this style.
There are dozens of unused lemmas, variations on definitions, cut-and-pasted
proofs and downright stupidities that, having learnt more about both Coq and
the problem domain, I could now remove. The proofs of actual programs could
easily be made an order of magnitude shorter. We have an eye to using this kind
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of logic in PCC-style scenarios, for which mechanical checkability is certainly
necessary. But working in Coq also caught errors in definitions and proofs. For
example, we originally took |Rgret(n)| to be simply S x S. The allocator does
satisfy that specification, but a failed proof of a simple client revealed that it
has a subtle flaw: if the block size is 1, the allocator can return location 0 itself
(in location 0) as the free block.

Theorem 2 is only a semantic type soundness result — it does not say that the
code actually computes factorials. In fact, only a couple of lines need tweaking to
add the functional part of the specification too. We presented a type soundness
result because that, rather than more general verification, is the direction of our
immediate future plans. Once we have refactored our Coq definitions somewhat,
we intend to investigate certified compilation of a small functional language in
this style. We will also prove a slightly more interesting allocator which actually
has a free list.

Although we have so far only focussed on proving a single program, a signif-
icant feature of the relational approach is that it can talk about equivalence of
low-level code modulo a particular contextual contract. For example, one might
hope to prove that all (terminating) allocators meeting our specification are ob-
servationally equivalent, or to verify the preservation of equational laws from
a high-level language. Previous work on modularity, simulation and refinement
in separation logic has run into some technical difficulties associated with the
non-deterministic treatment of allocation [23,13] which we believe are avoided
in our approach. We also need to look more seriously at the adjoint perping op-
eration, taking nat relations to natxstate relations [17,22]. Making all relations
be (-)T T-closed validates more logical principles and may be an alternative to
step-indexing.

Thanks to Noah Torp-Smith for helping with an early version of this work,
Josh Berdine for many useful discussions about separation, and Georges Gonthier
for his invaluable advice and instruction regarding the use of Coq.
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Abstract. In this article, we study the quantified constraint satisfaction
problem (QCSP) over infinite domains. We develop a technique called
collapsibility that allows one to give strong complexity upper bounds
on the QCSP. This technique makes use of both logical and universal-
algebraic ideas. We give applications illustrating the use of our technique.

1 Introduction

The constraint satisfaction problem (CSP) is the problem of deciding the truth
of a primitive positive sentence

Fuy . Fop(R(0iyy -y 0i ) A L)

over a relational signature, relative to a given relational structure over the same
signature. Informally, the goal in an instance of the CSP is to decide if there
exists an assignment to a set of variables simultaneously satisfying a collection
of constraints. Many search problems in computer science can be naturally for-
mulated as CSPs, such as boolean satisfiability problems, graph homomorphism
problems, and the problem of solving a system of equations (over some algebraic
structure). The CSP can be equivalently formulated as the relational homomor-
phism problem [14], or the conjunctive-query containment problem [18].

The ubiquity of the CSP in conjunction with its general intractability has
given rise to an impressive research program seeking to identify restricted cases
of the CSP that are polynomial-time tractable. In particular, much attention has
been focused on identifying those relational structures I" such that CSP(I")-the
CSP where the relational structure is fixed to be I'-is polynomial-time tractable.
In a problem CSP(I"), we call I" the constraint language, and use the term domain
to refer to the universe of I'. Many recent results have studied the problems
CSP(I') for finite-domain constraint languages I, see for example [8,9,7,6,13]
and the references therein. However, it has been recognized that many natural
combinatorial problems from areas such as graph theory and temporal reasoning
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can be expressed as problems of the form CSP(I") only if infinite-domain I" are
permitted [1]. This has motivated the study of constraint satisfaction problems
CSP(I") on infinite domains [1,2,4].

A recent subject of inquiry that builds upon CSP research is the quantified
constraint satisfaction problem (QCSP), which is the generalization of the CSP
where both existential and universal quantification is allowed, as opposed to
just existential quantification. As is well-known, the extra expressiveness of the
QCSP comes with an increase in complexity: the finite-domain QCSP is PSPACE-
complete, in contrast to the finite-domain CSP, which is NP-complete. Recent
work on the QCSP includes that of Borner, Bulatov, Krokhin, and Jeavons [5],
Chen [11,10,12], Gottlob, Greco, and Scarcello [15], and Pan and Vardi [20].

In this paper, we consider infinite-domain quantified constraint satisfaction.
Our contribution is to introduce, in the infinite-domain setting, a technique
called collapsibility that allows us to give complexity upper bounds on problems
of the form QCSP(I"), such as NP upper bounds, that are dramatically lower
than the “obvious” upper bound of PSPACE that typically applies. On a high
level, collapsibility allows one to show that, for certain contraint languages I", an
arbitrary instance of QCSP(I") can be reduced to the conjunction of instances of
QCSP(I") that are simpler in that they have only a constant number of (or no)
universally quantified variables; typically, such a conjunction can be cast as an
instance of CSP(I") for some constraint langauge I'" with CSP(I"") in NP, and
hence the reduction yields a proof that QCSP(I) is in NP.

To develop our collapsibility technique, we make use of a universal-algebraic
approach to studying the complexity of constraint languages; this approach as-
sociates a set of operations called polymorphisms to each constraint language,
and uses this set of operations to derive information about complexity. While
the present work takes inspiration from technology that was developed in the
finite-domain setting [11,10] for similar purposes, there are a number of differ-
ences between the infinite and finite settings that necessitate the use of more
involved and intricate argumentation in the infinite setting. One is that, while
there is a canonical choice for the aforementioned simpler instances in the finite
setting, in the infinite setting there is no such canonical choice and indeed often
an expansion of the constraint language is required to achieve a reduction from
the QCSP to the CSP. Another is that, in the infinite setting, any assignment
or partial assignment f to variables induces, via the automorphism group of I,
an orbit of assignments {o(f) : o is an automorphism of I'}. The property of an
assignment satisfying constraints over I" is orbit-invariant, but in the presence
of universal quantification, one needs to make inferences about the orbit of an
assignment in a careful way (see Lemma 3 and its applications).

2 Preliminaries

When A and B are sets, we use [A — B] to denote the set of functions mapping
from A to B. When f : A — B is a function and A’ is a subset of A, we use f|a
to denote the restriction of f to A’. We extend this notation to sets of functions:
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when F' C [A — B] and A’ is a subset of A, we use F|4 to denote the set
{flar : f € F}. When f: A — B is a function, we use the notation fla" — V']
to denote the extension of f mapping a’ to b’. We will use [k] to denote the first
k positive integers, {1,...,k}.

Relational structures. A relational language T is a (in this paper always finite)
set of relation symbols R;, each of which has an associated finite arity k;. A
(relational) structure I' over the (relational) language T (also called 7-structure)
is a set D (the domain or universe) together with a relation R; C D% for each
relation symbol R; from 7. For simplicity, we use the same symbol for a relation
symbol and the corresponding relation. If necessary, we write R!" to indicate
that we are talking about the relation R belonging to the structure I'. For a
7-structure I' and R € 7 it will also be convenient to say that R(uq,...,ug)
holds in I" iff (uq,...,ux) € R. If we add relations to a given structure I" we call
the resulting structure I'" an expansion of I', and I is called a reduct of I".

Homomorphisms. Let I" and I’ be T-structures. A homomorphism from I to
I is a function f from D to D such that for each n-ary relation symbol R in
7 and each n-tuple (ay,...,a,), if (a1,...,a,) € R", then (f(a1),..., f(an)) €
RT'. In this case we say that the map f preserves the relation R. Isomor-
phisms from I' to I' are called automorphisms, and homomorphisms from I’
to I' are called endomorphisms. The set of all automorphisms of a structure
I' is a group, and the set of all endomorphisms of a structure I" is a monoid
with respect to composition. When referring to an automorphism of I', we
sometimes use the term I'-automorphism to make clear the relational structure.
An orbit of k-tuples in I' is a set of k-tuples of the form {(a(s1),...,a(sk)) :
a is an automorphism of I'} for some tuple (s1,..., sg).

Polymorphisms. Let D be a countable set, and O be the set of finitary op-
erations on D, i.e., functions from D* to D for finite k. We say that a k-ary
operation f € O preserves an m-ary relation R C D™ if whenever R(z%, ..., x%)
holds for all 1 < i <k in I', then R(f(zf,...,a}),..., f(zl,,...,xk)) holds in
I'. If f preserves all relations of a relational 7-structure I', we say that f is a
polymorphism of I". In other words, f is a homomorphism from I'* = I'x...x I
to I', where Iy x Iy is the (categorical- or cross-) product of the two relational
T-structures I and I5. Hence, the unary polymorphisms of I" are the endomor-
phisms of I'.

Quantified constraint satisfaction. We define a 7-formula to be a quantified
constraint formula if it has the form Qv ... Qnun (W1 A. .. Aty,), where each Q;
is a quantifier from {V,3}, and each 1; is an atomic 7-formula that can contain
variables from {vy,...,v,}.

The quantified constraint satisfaction problem over a 7-structure I', denoted
by QCSP(I"), is the problem of deciding, given a quantified constraint formula
over 7, whether or not the formula is true under I'. Note that both the universal
and existential quantification is understood to take place over the entire universe
of I'. We use D throughout the paper to denote the universe of a constraint lan-
guage I under discussion. The constraint satisfaction problem over a 7-structure
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I", denoted by CSP(I'), is the restriction of QCSP(I") to instances only including
existential quantifiers.
A constraint language is simply a relational structure; we typically refer to
a relational structure I' as a constraint language when we are interested in the
computational problem QCSP(I") or CSP(I"). We also refer to I" as a template.
We will illustrate the use of our technique on examples drawn from the fol-
lowing two classes of constraint languages.

Equality constraint languages. An equality-definable relation is a relation
(on an infinite domain) that can be defined by a boolean combination of atoms
of the form x = y. An equality constraint language is a relational structure
having an countably infinite universe D and such that all of its relations are
equality-definable relations over D.

When I' is an equality constraint language with domain D, any permutation
of D is an automorphism of I', that is, the automorphism group of I" is the full
symmetric group on D. Observe that, if a tuple t = (¢1, ..., ¢x) is an element of an
equality-definable relation R C D¥, then all tuples of the form (7(t1),...,7(tz)),
where 7 is a permutation on D, are also contained in R. In studying equality
constraint languages, it is therefore natural for us to associate to each tuple
(t1,...,t) the equivalence relation p on {1,...,k} where ¢« = j if and only if
t; = t;. This is because, by our previous observation, a tuple t = (¢1,...,%x) isin
an equality-definable relation R if and only if all k-arity tuples inducing the same
equivalence relation as ¢ are in R. We may therefore view an equality-definable
relation of arity k as the union of equivalence relations on {1,...,k}.

It is known that for an equality constraint language I", CSP(I") is polynomial-
time tractable if I" has a constant unary polymorphism or an injective binary
polymorphism, and is NP-complete otherwise [4]. It is also known (and not
difficult to verify) that for every equality constraint language I", the problem
QCSP(I") is in PSPACE [3]. In general, the quantified constraint satisfaction
problem for equality constraint languages is PSPACE-complete [3]; this is closely
related to a result of [21].

Temporal constraint languages. A temporal relation is a relation on the
domain Q (the rational numbers) that can be defined by a boolean combination
of expressions of the form = < y. A temporal constraint language is a relational
structure having Q as universe and such that all of its relations are temporal rela-
tions. As with equality constraint languages, it is known and not difficult to verify
that for every temporal constraint language I, the problem CSP(I") is in NP, the
problem QCSP(I) is in PSPACE, and there are temporal constraint languages
I' such that QCSP(I") is PSPACE-complete. Temporal constraint languages are
well-studied structures in model theory (e.g., they are all w-categorical; see [16]).

3 Collapsibility

In this section, we present our collapsibility technology. We begin by introducing
some notation and terminology.
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When & is a quantified constraint formula, let V% denote the variables of &,
let E? denote the existentially quantified variables of @, and let U? denote the
universally quantified variables of . When u € V? is a variable of @, we use
V2%, to denote the variables coming strictly before u in the quantifier prefix of
@, and we use V£, to denote the variables coming before u (including u) in the
quantifier prefix of ®. When S is a subset of V¥, we say that S is an initial
segment of @ if S =0 or S = V2 for a variable u € V2.

Let us intuitively think of an instance of the QCSP as a game between two
players: a universal player that sets the universally quantified variables, and an
existential player that sets the existentially quantified variables. The existential
player wants to satisfy all of the constraints. We may formalize the notion of a
strategy for the existential player in the following way.

A strategy for a quantified constraint formula @ is a sequence of partial func-
tions o = {0, : [V, — D] — D},cpe. The intuition behind this definition is
that the function o, of a strategy describes how to set the variable = given a
setting to all of the previous variables. We say that an assignment f to an initial
segment of @ is consistent with o if for every existentially quantified variable
 in the domain of f, it holds that o, (f|y2 ) is defined and is equal to f(x).
Intuitively, f is consistent with o if it could have been reached in a play of the
game under o.

A playspace for a quantified constraint formula @ is a set of mappings A C
[V? — D]. We will often be interested in restrictions of a playspace A of the form
Alyz or Alys ; we will use the notation A(<u) and A(<u) for these restrictions,
respectively. The quantified constraint formula @ will always be clear from the
context. Likewise, for a function f defined on a subset of V?, we will use the
notation f(<u) and f(<u) for the restrictions f|y» and f[ys , respectively.

Intuitively, a playspace will be used to describe a restriction on the actions
of the universal player: an existential strategy will be a winning strategy for a
playspace as long as it can properly respond to all settings of variables that fall
into the playspace. We formalize this in the following way.

Let A be a playspace for a quantified constraint formula &, and let o be a
strategy for the same formula ¢. We say that o is a winning strategy for A if
the following two conditions hold:

— for every variable x € E? and every assignment f € A(<x), if f is consistent
with o, then o,(f) is defined and f[z — 0,(f)] € A(<x), and
— every assignment f € A consistent with o satisfies the constraints of ®.

We call a playspace winnable if there exists a winning strategy for it.

Let us say that a playspace A (for a quantified constraint formula @) is V-free
(3-free) if for every universally (existentially) quantified variable u € V', every
domain element d € D, and every function f € A(<u), the function flu — d]
is contained in A(<u). As a simple example illustrating these notions, observe
that for any quantified constraint formula @, the playspace [V® — D] is both
V-free and 3-free. The notion for V-freeness yields a characterization of truth for
quantified constraint formulas.
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Proposition 1. Let ¢ be a quantified constraint formula . The following are
equivalent:

1. @ is true.
2. The V-free playspace [V® — D] has a winning strategy.
3. There exists a V-free playspace for ® having a winning strategy.

Having given the basic terminology for collapsibility, we now proceed to develop
the technique itself. The following is an outline of the technique. What we aim to
show is that for certain templates I", an arbitrary instance ¢ of QCSP(I") is truth-
equivalent to (the conjunction of) a collection of “simpler” QCSP instances.
These simpler instances will always have the property that the truth of the
original instance @ readily implies the truth of the simpler instances; what is
non-trivial is to show that the truth of all of the simpler instances implies the
truth of the original instance. We will be able to establish this implication in
the following way. First, we will translate the truth of the simpler instances
into winnability results on playspaces (for the original instance @). Then, we
will make use of two tools (to be developed here) that allow us to infer the
winnability of larger playspaces based on the winnability of smaller playspaces
and the polymorphisms of @. These tools will let us demonstrate the winnability
of a V-free playspace, which then implies the truth of & by Proposition 1.

We now turn to give the two key tools which allow us to “enlargen” playspaces
while still preserving winnability. To illustrate the use of these tools, we will use
a running example which will fully develop a collapsibility proof.

Example 2. As a running example for this section, we consider positive equality
constraint languages. Positive equality constraint languages are equality con-
straint languages where every relation is definable by a positive combination of
atoms of the form x = y, that is, definable using such atoms and the boolean
connectives {V,A}. A simple example of a positive equality constraint language
is I' = (N, §), where S is the relation

S ={(w,r,y,2) eEN*: (w=2)V (y=2)}.

Any equality-definable relation R, viewed as the union of equivalence rela-
tions, can be verified to have the following closure property: every equivalence
relation p’ obtainable from an equivalence relation p from R by combining two
equivalence classes into one is also contained in R. In fact, from this observation,
it is not difficult to see that a positive equality constraint language has all unary
functions as polymorphisms. (Indeed, the property of having all unary functions
as polymorphisms is also sufficient for an equality constraint language to be a
positive equality constraint language, and hence yields an algebraic characteri-
zation of positive equality constraint languages.)

We will show that, for any positive equality constraint language I, the prob-
lem QCSP(I") reduces to CSP(I" U {#}). In particular, for an instance

b= lel e annC
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of QCSP(I"), we define the collapsing of Y to be the CSP(I"U {#£}) instance

(15/:31}1...31}”(6/\/\{’01‘75’0]‘2i<j,Qj :V})

That is, the collapsing of @ is obtained from @ by adding constraints asserting
that each universal variable y is different from all variables coming before v,
and then changing all quantifiers to existential. We will show that an instance
@ of QCSP(I') is true if and only if its collapsing is true. This gives a reduction
from a problem whose most obvious complexity upper bound is PSPACE, to a
problem in NP. The inclusion of this problem in NP has been previously shown by
Kozen [19]; we have elected it as our running example as we believe it allows us
to nicely illustrate our technique. Note that our reduction is tight in that there
are known NP-hard positive equality constraint languages [3]. (The existence
of such NP-hard constraint languages also implies that one cannot hope for a
reduction from QCSP(I") to CSP(I") which does not “augment the template”,
since for positive equality constraint languages I", the problem CSP(I") is known
to be polynomial-time tractable [4].)

It is readily seen that if an instance @ is true, then its collapsing @' is true.
The difficulty in justifying this reduction, then, is in showing that if a collaps-
ing @' is true, then the original instance @ is true. Our first step in showing
this is to simply view the truth of ¢’ as a winnability result on a playspace.
Let a : {v1,...,vn} — D be an assignment satisfying the constraints of @'.
Clearly, the playspace {a} is winnable, via the strategy o = {0, },cp+ defined
by o(alye,) = a(x). We will use the winnability of this playspace to derive
the winnability of larger and larger playspaces, ultimately showing the winnabil-
ity of the largest playspace [V? — D], and hence the truth of the formula (by
Proposition 1). O

The following lemma allows one to add, to a winnable playspace, tuples from
the orbits induced by the tuples already in the playspace, while maintaining the
property of winnability.

Lemma 3. (Orbit Lemma) Let A be a winnable playspace for a quantified con-
straint formula @ over template I'. Let y € U® be a universally quantified vari-
able. There exists a winnable playspace A’ such that the following hold:

— for each t € A(<y) and I'-automorphism o that fizes every point {t(u) : u €
A{<y)}, o(t) is in A'(<y). Note that here, o(t) is equal to t at all points
except (possibly) y.

- ACA C{r(t):t € A 7 is a I'-automorphism}.

- Al<y) = A'(<y).

Proof (idea). Let F be the set of all functions of the form o(t) satisfying the
conditions of the first property, that is, ¢ is in A(<y) and o is a I'-automorphism
that fixes every point {¢(u) : u € A(<y)}. For each element f € F\ A(<y), define
oy and ¢y to be such mappings so that f = oy (ty). We define A’ to be

AU{of(e) : f € F\ A(Sy),e € A e(<y) =t}
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Let {p,} be a winning strategy for A. We assume without loss of generality
that the partial functions p, are only defined on functions f € A(<x) that are
consistent with p. We need to extend the p, so that they handle extensions of the
functions f € F'\ A(<y). When ¢ is an extension of such a f, we define p/,(g) as
of (pw(ofl(g))). That is, we translate g back by o and look at the response by
pa, and apply oy to that response to obtain our response. It is straightforward
to verify that the {p} are a winning strategy for A’. O

Example 4. We continue the discussion of positive equality constraint languages,
our running example. We have established the winnability of a size-one playspace
{a}, where for all universally quantified variables y, the value a(y) is different
from a(v) for all variables v coming before y in the quantifier prefix. Our goal is
to infer the winnability of the largest playspace [V¥ — D], using the winnability
of this playspace.

Let us say that a playspace A is #-free if for every universally quantified
variable y € V?, every function f € A(<y), and every value d € D distinct
from all values in {f(u) : u € VZ}, the function fly — d] is contained in
A(<y). Assuming that our original instance @ contained at least one universally
quantified variable y, our playspace {a} is not #-free: there is only one extension
of a(<y) in {a}{<y), namely, a(<y). However, using the Orbit Lemma, we can
expand {a} into a #-free playspace, as follows.

Let y; be the first universally quantified variable of ¢. Applying the Orbit
Lemma to the playspace A = {a} and variable y = y;1, we obtain a playspace
A; that satisfies the #-freeness condition at y;. We demonstrate this as follows.
If f is a function in A;(<y;), we have f € A(<y;), since the Orbit Lemma
provides A(<y) = A'(<y). Let h = fly1 — d] be any extension of f where
d is distinct from all values in the image of f. We want to show that h is
contained in A; (<y;). We know that there exists an extension f' = fy3 — d']
of f such that d’ is different from all values in the image of f. (This is because
f € A{<y1) = {a}{<y1), and the function a assigns y; to a value different from
all values assigned to preceding variables.) Let o be a permutation on D (that is,
a I'-automorphism) that fixes all points in the image of f, but maps d’ to d. The
Orbit Lemma provides that o(f’) = h is in A4;(<y). Repeatedly applying the

Orbit Lemma to the universally quantified variables y1,ys,... of @, we obtain
an increasing sequence of winnable playspaces A1, Asg, ... whose last member is
#-free.

Note that the Orbit Lemma provides, for each 4,
Ait1 C{7(t) : t € A;, 7 is a [-automorphism}
and hence, for each i,
A; C{7(t): t € A, 7 is a I'-automorphism}.

From this, we can see that each A; has the property that for any universally
quantified variable y; and for any function f € A;(<y;), any extension f[y; — d
of f in A;(<y;) has d distinct from all values in the image of f; this is because
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A has this property, and this property is preserved by adding, to a playspace,
permutations of functions already in the playspace.

Summarizing, we have shown that the winnability of the size-one playspace
from Example 2 implies the winnability of a #-free playspace. O

The next theorem allows us to, roughly speaking, use a polymorphism ¢ : D* —
D of & to compose together k£ winnable playspaces to derive another winnable
playspace.

Let ¢ : D¥ — D be an operation. Let A,Bi,...,B; be playspaces for a
quantified constraint formula @. We say that A is g-composable from (B, . .., Bg)
if for all universally quantified variables y € U?, the following holds: if t € A(<y)
and t1 € B1(<y), ..., tx € Bp(<y) are such that t = g(¢1,...,t;) pointwise, and
d € D is a value such that t[y — d] € A(<y), then there exist dy,...,d; € D
such that d = ¢g(dy,...,dr) and t1[y — di] € B1(<y), ..., tx[y — di] € Br(<y).

Theorem 5. Let @ be a quantified constraint formula, and assume that g :
DF — D is a polymorphism of all relations in ®. Assume that A, By, ..., By are
playspaces such that A is 3-free and g-composable from (Bu,...,Bx). If each of
the playspaces By, ..., By is winnable, then A is winnable.

Theorem 5 was inspired by machinery developed for finite-domain QCSPs pre-
sented in [10, Chapter 4]. Before giving the proof, we give an example application
that allows us to conclude our running example.

Ezxample 6. For a QCSP instance @ over a positive equality constraint language
I', we have shown, in Examples 2 and 4, the winnability of a #-free playspace A
based on the truth of the collapsing &’ of @; the collapsing ¢’ is a CSP instance
(over an equality constraint language). We now complete the justification of our
reduction by showing that the winnability of this #-free playspace implies the
winnability of the “full” playspace [V? — D].

Let g : D — D be a surjective unary function such that g=*(d) is of infinite size
for every d € D, that is, every point d € D in the image of ¢ is hit by infinitely
many domain points. As noted in Example 2, the function g is a polymorphism
of I'. To show the winnability of the playspace [V — D], we show that it is g-
composable from A, from which its winnability follows by appeal to Theorem 5.

Why is the playspace [V? — D] g-composable from A.? Let y € U? be a
universally quantified variable, let ¢ € A(<y), let ¢’ € Ax(<y) and suppose that
t = g(t') pointwise. It suffices to show that for any value d € D, there exists
d" € D such that d = g(d’) and t'[y — d'] € A. This holds: one can pick d’ to be
any point in g~!(d) \ image(t’). This set is non-empty as it is the subtraction of
a finite set from an infinite set, and for any such d’ we have t'[y — d'] € Ax(<y)
by the #-freeness of A. O

Proof (Theorem 5). For each i € [k], let ¢° be a winning strategy for the
playspace B;. We define a sequence of mappings 0 = {oy},cpe that consti-
tutes a winning strategy for A. We consider each initial segment one by one, in
order of increasing size. After the initial segment S has been considered, we will
have defined mappings {o, },cprns having the following properties:
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(a) if S = V?|<, for an existentially quantified variable x, then for any f €
A(<z) consistent with o, o, (f) is defined and flz — 0,(f)] € Als.

(b) if f € A|g is consistent with o, then there exist f; € Bils, ..., fk € Bils
such that f = g(f1,..., fx) pointwise and f; is consistent with o% for all
i€ [k].

This suffices, since after the initial segment S = V? has been considered, the
sequence of mappings {0, } constitute a winning strategy. The first requirement
in the definition of a winning strategy holds because property (a) holds for all
possible initial segments S. The second requirement in the definition of a winning
strategy holds: by property (b), any assignment f € A|y+ consistent with o is
equal to g applied point-wise to assignments f1 € Bi|ye, ..., fi € Bi|ye that are
consistent with o', ..., o", respectively; since the ¢ are winning strategies, each
fi satisfies the constraints of @, and since g is a polymorphism of the relations
of @, f satisfies the constraints of @.

We now give the construction.

Let S’ = V2, be an initial segment of size |S’| > 1, and let S = V2, be the
initial segment of size |S’|—1. We may assume by induction that the construction
has been performed for S. To perform the construction for S’, we consider two
cases depending on the quantifier of the variable u.

Case 1: u is an 3-quantified variable. We consider each mapping f € Alg. If f
is not consistent with o, then we leave o, (f) undefined. If f is consistent with o,
then in order to satisfy property (a), we need to define o, (f). Since property (b)
holds on S, there exist the described mappings f1 € Bils, ..., fx € Bk|s with
f=g9(f1,..., fr) pointwise and with f; consistent with o for all i € [k]. Since,
for each i € [k], the o’ are winning strategies, there is an extension f/ € B;|s
of f consistent with o®. We define o,,(f) as g(f{(u),..., f/.(u)). The mapping
"= flu — ou(f)] is in Als: by the I-freeness of A. Now, the mapping f’
is consistent with o, so we need to verify that property (b) holds on f’. It is
straightforward to verify that the mappings f1, ..., f}, serve at witnesses.

Case 2: u is a V-quantified variable. Clearly, property (a) is trivially satisfied
for S’, so we need only consider property (b). Suppose that f’ € A|g/ is consistent
with 0. We want to show the existence of the described mappings fi, ..., fi. Let
f = f'|s. Since property (b) holds for the initial segment S, we know that there

exist f1 € Bi(<u),..., fi € Br{<u) such that f = g(f1,..., fi) pointwise and f;
is consistent with o? for all i € [k]. By the definition of g-composable, there exist
extensions f1,..., f. of fi,..., fr, respectively, to S’, satisfying the conditions
of property (b). O

4 Applications

In the previous section, we developed some tools for giving collapsibility proofs,
and illustrated their use on positive equality constraint languages. We showed
that for any positive equality constraint language I", the problem QCSP(I") is in
NP. In this section, we give further applications of our technique.
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4.1 Max-Closed Constraints

We consider temporal constraint languages that are closed under the binary
operation max : Q x Q — Q that returns the maximum of its two arguments.
We will demonstrate the following theorem.

Theorem 7. Let I' be a temporal constraint language having the max operation
as polymorphism. The problem QCSP(I") is in NP.

Ezample 8. Consider the temporal constraint language (Q, R) where R is the
relation {(x,y,2) € Q* : ¥ < yor x < z}. This constraint language has the
max operation as polymorphism: suppose (a,b,c), (a/,V',¢') € R. We want to
show that (max(a,a’), max(b,b’), max(c,c’)) € R. Let us assume without loss of
generality that a > a’. We know that either ¢ < b or a < ¢. If @ < b, then
a < max(b,b') and we have max(a,a’) < max(b,b'). If a < ¢, then a < max(c, ¢)
and we have max(a,a’) < max(c, ). O

We now prove this theorem. Let @ be an instance of QCSP(I) for a max-closed
template I'. As in the collapsibility proof for positive equality constraint lan-
guages, we will show a reduction to a CSP. Whereas in the case of positive
languages we gave a direct reduction to a CSP, here, we give a reduction to
a conjunction of QCSP instances, each of which has one universally quantified
variable; we argue that this ensemble can be formulated as a CSP.

Denote @ as Q1v1 ... Qnv,C. (We assume that @ has at least one universally
quantified variable, otherwise, it is an instance of CSP(I").) For a universally
quantified variable v; € U?, we define the wvy-collapsing of @ to be the QCSP
instance

& = Jvy ... Fop 1 VorTvers . o (CA N\{vi > 0500 < j.j # k,Q; = }).

That is, the vg-collapsing of @ is obtained from @ by adding constraints asserting
that each universal variable y (other than vy) is less than all variables coming
before it, and changing all universal quantifiers to existential except for that of
vg. It is readily verifiable that if the original QCSP(I") instance ¢ was true, then
all of its y-collapsings (with y € U?®) are also true. We show that the converse
holds. This suffices to place QCSP(I") in NP, by the following lemma.

Lemma 9. Let B C Q3 be the “different-implies-between” relation defined by
B={(z,y,2) €eQ:(z#2) > (x <y <2)V(x >y >2)} Let I be the
expansion of a temporal constraint language I' with B and <. Given an instance
& of QCSP(I'), there exists an instance &' of CSP(I") that is true if and only
if @ is true. For every constant k, the mapping & — @' can be computed in
polynomial time on those formulas ® with |U?| < k.

Lemma 9 can be viewed as a strong version of the well-known quantifier elimi-
nation property for temporal constraint languages.

We want to show that if all y-collapsings of an instance ¢ are true, then &
itself is true. How will we do this? We will first translate the truth of each y-
collapsing into a winnability result on a playspace A, for ¢. We will then show
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that each of these playspaces A, can be expanded into a playspace .A:’g that
obeys a “freeness” condition but is still winnable. We then compose together the
playspaces A; using Theorem 5 to derive the winnability of the full playspace
V? — Q).

We translate the truth of the y-collapsings of @ into winnability results on
playspaces, as follows. Let us say that a playspace A (for @) is V-free at z € U?
if for every assignment f € A(<z), and every d € D, the function f[z — d] is
contained in A(<z). For each y € U?, it is readily verified that the truth of the
y-collapsing of @ implies the winnability of a playspace A, that is V-free at y,
and where for all ¢ € A, it holds that t(a) > t(b) if b€ U\ {y},a € V?, and a
comes before b in the quantifier prefix.

Let S C U? be a set of universally quantified variables. We define a playspace
A for @ to be (S, <)-free if:

— for every variable y € S, A is V-free at y, and

— for every variable y € U?\ S, and every assignment f € A(<y), there exists
an interval (—oo, dy] such that for every d € (—o0, d,], the function fly — d]
is contained in A(<y).

Our playspaces A, are not ({y}, <)-free, but via repeated application of the
Orbit Lemma, from each playspace A, we may obtain a winnable playspace A;/
that is ({y}, <)-free.

We prove by induction, on the size of S, that there is a winnable playspace
Al that is (S, <)-free (for all S C U?). This suffices to show the winnability of a
(U?, <)-free playspace, which is V-free, implying the truth of ¢ by Proposition 1.
Suppose k > 1. By induction, we assume that we have constructed our Al for
|S| < k. Let S" C U? be of size |S’| = k+ 1. We want to show the winnability of
a (S’, <)-free playspace. Pick any element sg € S" and set S = S’\ {so}. Suppose
that A{ is ({s0}, <)-free with respect to {dy},cp\(s,}, and that A is (S, <)-
free with respect to {e,},cy#\g. We show the winnability of the playspace AL,
that is (S’, <)-free with respect to {min(dy, e,)},cue\ s/, and also 3-free. In par-
ticular, we prove that Ag/ is max-composable from (A[ , A). The winnability
of Ag/ then follows from Theorem 5. Let y € U? and consider t € Ak, (<y),
ts, € Aso (<y), ts € As(<y) such that ¢ = max(ts,,ts) pointwise. Let d € Q
be a value such that tly — d] € Al,. We want to find values di,ds such that
d = max(dy,ds) and ts, [y — di] € A, (<y), and ts[y — do] € Ag(<y). We split
into cases.

—y = So: we select di = d and dz to be a value such that dy < d and
dy < d,. The first inequality guarantees that d = max(di, d2) and the second
guarantees that ts, [y — di1] € As, (<y).

— y € S: we select do = d and d; to be a value such that di < d and d; < e,.
This case is similar to the previous one, except we use the V-freeness of Ag
at y, whereas in the previous case, we used the V-freeness of As,.

—yeU?\ S we select d; = d and dy = d.
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4.2 Near-Unanimity Operations

A near-unanimity operation is an operation f : D*¥ — D of arity k > 3 sat-
isfying the identities f(y,x,...,2) = f(z,y,z,...,x) = -+ = f(=,...,x,y) for
all x,y € D. Near-unanimity operations have been studied in the finite case
in [17,10]. We show that, for a constraint language I" having a near-unanimity
operation as polymorphism, the problem QCSP(I") essentially reduces to the
problem CSP(I").

Theorem 10. Suppose that I" is a constraint language having a near-unanimity
operation g : D*¥ — D as polymorphism. There exists a polynomial-time com-
putable mapping that, given an instance ® of QCSP(I"), outputs a set S of in-
stances of QCSP(I") such that:

— each instance in S has at most k — 1 universally quantified variables, and
— all instances in S are true if and only if the original instance @ is true.

Proof. Let @ be an instance of QCSP(I"). In this proof, we define a j-collapsing
of @ to be an instance of QCSP(I") obtained from & by selecting a subset S C Ue
of universally quantified variables of size |S| = j, and changing the quantifiers
of the variables U? \ S to existential, and adding constraints {y =y’ : v, €
U?\ S} equating all of the variables in U? \ S. (Note that these equalities can
subsequently be eliminated by renaming and removing variables.)

Clearly, if @ is true, all of its j-collapsings are true. We show that if the j-
collapsings of & are true for all j < k — 1, then & is true. This is obvious if &
has k — 1 or fewer universally quantified variables, so we assume that it has k
or more universally quantified variables. It is straightforward to verify that the
truth of the j-collapsing of @ arising from the subset S C U? (with |S| = j)
implies the winnability of a playspace Ag (for @) that is V-free at all y € S and
such that f(y') = a for all y € U? \ S for a fixed constant a. (See the proof of
Theorem 7 for the definition of V-free at y.)

We prove that for all subsets S C U?, there is a winnable playspace Ag
(for @) that is V-free at all y € S. This suffices, since then Ays is a winnable
playspace that is V-free. We prove this by induction on |S|. We have pointed
out that this is true when |S| < k — 1, so assume that |S| > k. Select k distinct
elements s1,...,s; € S. For each i € [k], define S; = S\ {s;}. We claim that the
playspace Ag that consists of all functions f : V¥ — D such that f(y) = a for all
y € U?\ S, is g-composable from (Asg,, ..., As,). The result then follows from
Theorem 5. We verify this as follows. Let y € U? and suppose that t € Ag(<y)
and t; € Ag,(<y) for all i € [k] are such that ¢ = g(t1, ..., ) pointwise, and d €
D is a value such that t[y — d] € Ag(<y). We want to give values di,...,d, € D
such that d = g(dy,...,dx) and t;|y — d;] € Asg,(<y). We split into cases.

— If y = s; for some ¢ € [k], we set d; = a and d; = d for all other j, that is,
J € K\ {i}.

—IfyeS\{s1,...,sk}, weset d;, =d for all i € [k].

—IfyeU?\ S, weset d; =a for all i € [K].
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The following is an example application of Theorem 10. Define the operation
median : Q> — Q to be the operation that returns the median of its three
arguments. The operation median is a near-unanimity operation of arity 3.

Theorem 11. Suppose that I' is a temporal constraint language having the
median operation as polymorphism. The problem QCSP(I") is in NP.

Proof. We use the reduction of Theorem 10 along with Lemma 9 to obtain a
reduction to CSP(I") for a temporal constraint language I"’. O
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Abstract. We define a hierarchy of term systems T% by means of re-
strictions of the recursion schema. We essentially use a pointer technique
together with tiering. We prove T% C NC* C T*+!, for k > 2. Special
attention is put on the description of 72 and T° and on the proof of
T? C NC? C T3. Such a hierarchy yields a characterization of NC.

1 Introduction

The present work enters the field of Implicit Complexity. By Implicit, we mean
that focus is done on algorithms rather than functions. In particular, the question
of how to compute a function with respect to of one of its algorithms arise.

Apart from its theoretical interest, the present study has some practical con-
sequences. Since the tiering condition we consider on programs is decidable, the
term systems can be used for static analysis of programs, that is for certification
of bounds on the time/space usage of programs. In an other context, such an ap-
proach has been established on the theoretical study of Hofmann [Hof99, Hof02]
which found applications in the Embounded Project!.

The present approach of Implicit Complexity is in the vein of Bellantoni-
Cook/Leivant, that is, we use some tiering discipline. Since the seminal papers
of Simmons [Sim88], Bellantoni-Cook [BC92|, and Leivant-Marion [LM93], the
approach has shown to be fruitful. For instance, see Mairson and Neergaard
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In this paper, we try to shape the form of recursion that corresponds to
NCF. In other words, we are working towards an implicit characterization of
the complexity classes NC*, k € N. We discuss the term systems 7% such that
Tk C NC*k C Tk for k > 2. NC* is the class of languages accepted by uniform
boolean circuit families of depth O(loglC n) and polynomial size with bounded
gates; and NC = J, NC*.

To motivate the definition of our system we look to NC* from the point of
view of Alternating Turing Machines (ATMs). The relation is established by the
following theorem.

Theorem 1 (Ruzzo, [Ruz81}1). Let k > 1. For any language L C {0,1}*, L is
recognized by an ATM in O(log" n) time and O(logn) space iff it is in (uniform)
NC*,

The underlying intuition for our implicit approach is to use ramified recursion
to capture the time aspect and recursion with pointers to capture the space
aspect. We use linear recursion in the sense of [LMO00] in order to stratify the
degree of the polylogarithmic time, and recursion with pointers as in [BO04]. We
define term systems T* allowing k ramified recursion of which the lowest one is
equipped with pointers.

We work in a sorted context, in the vein of Leivant [Lei95]. For T* we use
k + 1 tiers:

— tier 0 with no recursion;
— tier 1 for recursion with pointers to capture the space aspect;
— tiers 2 to k for ramified recursions which deal with the time aspect.

There are two implicit characterization of NC!, one by Leivant-Marion using
linear ramified recurrence with substitution [LMO0], and one by Bloch [Blo94] in
a Bellantoni and Cook [BC92] recursion setting. Clote [Clo90], using bounded re-
cursion schemes, gives a machine-independent characterization of NC*. Leivant’s
approach to NC* [Lei98] is machine and resource independent, however, it is not
sharp. It consists of term systems RS R for ramified schematic recurrence. RS RF
characterizes NC* only within three levels:

RSRF C NC* C RSR**2, k> 2.

Our term systems reduce the unsharpness of the characterization of NC* to
two levels:
TF C NCkF C T k> 2.

As related work we mention here [LM95] where alternating computations was
captured by mean of ramified recursion with parameter substitution. For NC there
exists also an implicit characterization by use of higher type functions in [AJST01].

The structure of the paper is briefly as follows. In Section 2, we present the
term systems and state some preliminary results. In Section 3, we describe the
upper bounds, that is the way of compiling the term systems in terms of circuits.
Section 4 is devoted to the lower bound.
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2 The Term Systems T*

The term systems T* are formulated in a k + l-sorted context, over the tree
algebra T. The algebra T is generated by 0, 1 and * (of arities 0, 0 and 2, respec-
tively), and we use infix notation for %. As usual, we introduce three additional
constants: L for the left destructor, R for the right destructor and ¢ for the con-
ditional. They are defined as follows: L(0) =0, L(1) = 1, L(u * v) = u, R(0) = 0,
R(1) =1, R(uxv) = v, and ¢(0,z,y,2) =z, ¢(1,z,y,2) =y, C(u*v,,y,2) = 2.

Following notation introduced by Leivant in [Lei95], we consider k + 1 copies
of T. Therefore, we formally have k + 1 copies of the constructors T, and k£ + 1
sorts of variables ranging over the different tiers. As usual, we separate different
tiers by semicolons.

As initial functions of T* one considers the constructors, destructors, condi-
tional and projection functions over the k+1 tiers. T* is closed under sorted com-
position over k + 1-tiers — f(xk;...;x0) = h(gr(Tk;-.-3);- - ;90(xk; ... ;20))
— and k schemes of sorted recursion as described below.

We start by define the recursion schemes of T2 and T® and describe only
then the general case of T*. In what follows one should notice that, whenever
f is defined by recursion with step function h, h itself cannot be defined by
recursion over the same tier as f is defined. Therefore, in T* we allow, at most, k
(step- )nested recursions. However, in the base cases the function g can be defined
by a further recursion over the same tier as f is defined, i.e., no restriction is
imposed on the number of recursions constructed on top of each other (base-
nested recursions).

2.1 The Term System T2

According to the underlying idea, the characterization of NC? requires three
tiers:

— Tier 0: no recursion.
— Tier 1: recursion with pointers (space tier).
— Tier 2: recursion without pointers, modifying tier 1 (time tier).

Tier 1 recursion (with pointers)

fGp,0,z;w) = g(;p, 0, z; w),
fGp,Lzsw) =g(5p, 1, z;w),
fGpuxv,z;w) =h(s;w, fGp*0,u, z;w), f(;p* 1, v, z;w)).

Tier 2 recursion

[0, y;z;w) = g(y; z; w),
f(Ly;zw) = g(y; ©; w),
fluxv,y;z;w) = h(;z;w, f(u, y; z; w)).



Towards an Implicit Characterization of NC* 215

Since h can use the variables of lower tier, @, to recurse on, we can nest
recursions.

In the tier 2 recursion, the recursion input is only used as a counter. In partic-
ular, the recursion only takes the height of the tree u v into account. Therefore,
it might be more natural to rewrite this scheme in form of a successor recursion:
If one uses in the following scheme the expression u+1 as some kind of schematic
variable for u * v, where v is arbitrary, and 0 as a schematic expression for 1 or
the actual 0 (note that f(1,y;x;w) is defined as the same as f(0,y; x; w)), the
scheme can be written as follows:

Tier 2 recursion (successor notation)

0, y; 25 w) = g(y; x; w),
flu+1Ly;z;w) = h(;z;w, f(u, y; ©; w)).

Later on, in the course of a definition of a function using successor notation,
x + 1 can be read as an abbreviation of z * 1, and the schematic notation is in
accordance with the actual definition in terms of trees.

2.2 The Term System T3

According to the underlying idea, T2 has one more tier than T2 for recursion
(without pointers). Note that the recursion for the tiers 1 and 2 differ from those
for T2 only by the extra semicolon needed for the additional tier separation.

Tier 1 recursion (with pointers)

fGip,0,25w) = g(;;p,0, 5 w),
fGip Lz w) = g(;p, 1, @5 w),
fGipuxv,ziw) =h(w, f(3p*x0,u,xw), f(p* 1v,z;w)).

Tier 2 recursion

fGO0,y;z5w) = g(y; ¢ w),
fGLy;zw) = g(y; x;w),
fGuxv,y;x;w) = h(;;x;w, f(u, y; z;w)).

Tier 3 recursion

[0, zy; 2 w) = g(2; y; ¢ w),
[,z g2 w) = g(z; 95 w),
fluxv, z;y;z;w) = h(;y; z;w, fu, 295 25 w)).

Again the recursion schemes for time can be rewritten in successor notation.
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Tier 2 recursion (successor notation)

fG0,y;zw) = g(y; ;3 w),
fGu+ 1 y;x;w) = h(s; 25w, f(Gu, y; 2 w)).

Tier 3 recursion (successor notation)

[0,z y; 2 w) = g(2; y; ¢ w),
flu+1, z;y;25w) = h(;y; 25w, f(u, z;y; 5 w)).

2.3 The Term Systems T*

The extension of the definition of T2 and T to arbitrary k, k > 4 is straightfor-
ward. In each step from k — 1 to & we have to add another time tier, adapting
the notation of the existing recursion schemes to the new number of tiers and
adding one more nested recursion for the new tier k of the form:

Tier k recursion

fO,xk; Tp—1; ... ;215 W) = g(Tk; Th—1; - - - ; T1; W)
f ek Te—1; .. ;215 w) = g(Tk; Th—1; - - - ; T1; W)
fluxv, g @p—1;...;21;w) = h(;Tp—1; ... ;T1;w, [ (U, Tg; Tp—1; .. .;T1; W))

In successor notation this scheme reads as follows:
Tier k recursion (successor notation)
O, @p; xp—1; . 521 w) = g(Te; To—15 -5 T2 W)

flu+l, g @p—1;...;x1;w) = h(; Tp—1;...;T1; W, f(U, Tp; Tr—1;...; T1;W))

2.4 The Term System T*

T is just the restriction of T2 to two tiers only, and the single recursion scheme:

Recursion of T?

f(p,0,z;w) = g(p,0, z; w)
f(p, 1, z;w) = g(p, 1, z; w)
fp,u*v,z;w) =h(;w, f(p*0,u,z;w), f(p*1,v,x;w)).
Lemma 2. T C NC.

Proof. Let us give the key argument of the proof. Writing H(t), the height of a
term t, it is the case that arguments in tier 1 encountered along the computation
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have all linear height in the height of the inputs. As a consequence, for a given
function, any branch of recursion for this symbol is done in logarithmic time in
the size of the inputs. We conclude by induction on the definition of functions: a
branch of the computation will involve only finitely many such function symbols,
and so, can be simulated in NC'.

By a straightforward induction on the definition of functions, one proves
the key fact, that is arguments have linear height in the height of the input.
In other words, when computing f(x1,...,zr; w), for all subcalls of the form
h(zy,...,z);w’), then Yz : H(z") < O}, ., H(zs)).

Since a function of T% which has no arguments in tiers greater than 1 can be
defined also in 7" we have the immediate corollary:

Lemma 3. A function in T* using only arguments in tier 1 and tier 0 is defin-
able in NC*.

As an ad hoc designation, in the following, we call NC! function to a function
using only argument in tier 1 and tier 0.
For NC' functions we have simultaneous recursion:

Lemma 4. If f1,..., fn are defined by simultaneous recursion over tier 1, then
they are definable in T".

The proof is a straightforward adaptation of the corresponding proposition for
the system ST, characterizing NC| in [Oit04, Proposition 5].

3 The Upper Bound of T*

For the upper bound we model the computations of T by circuits. We start
with the exemplary case of T2

Theorem 5
T C NC2.

Proof Let f(y;x;w) be a function of T2. We will show that there is a circuit in
NC? which computes f(y; z; w).

The proof is done by induction on the definition of the function. The base
cases and composition are straightforward. Recursion for tier 1 only leads to
NC"* functions (Lemma 3). Therefore, we have to consider only the case that a
function defined by recursion for tier 2.

We consider first the case where we have only one argument in tier 2. It will
serve as a paradigm for the more general case.

BASE CASE: f has only one argument of tier 2, i.e. it is defined by the following
scheme:

[0 z3w) = g(;x;w),
flu+Lizsw) = h(; 25w, f(u; z;w)).
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where g are h already defined. By Lemma 3 they are both in NC'. That means
there are (uniform) circuits G and H both of polynomial size and O(log(n))
height that compute g and h. The circuit which computes f on (y; x; w) is given
in figure 1 (with n = |y|) .

log(n) calls of H

Fig. 1. The circuit F' computing f

First of all, observe that the circuit is uniform. Now, the size of this circuit is
|G| + 2 i< jnj=tog(n) [ 11| As the height of the tree is bounded by O(log(n)), the
number of H circuits is logarithmic. Since H and G circuits are of polynomial
size, it is also the case for F. We end by noting that the height of the circuit is
O(log(n)) x O(log(n)) = O(log®(n)) since it is tree of height O(log(n)) of circuit
of height O(log(n)). As a consequence, the circuit is in NC2.

HIGHER ARITIES: f has ¢ 4+ 1 argument in tier 2, i.e. it is defined by the
following scheme:

FO, 91,y w) = f'(y1, .y 5 w),
f(u+]-7y17"'1y@;m;w) :h(;w;wvf(uayla"~7y€;w;w))~

where f’ and h are already defined. We already know that & is definable in NC*.
Suppose that the rule for f’ is

frlutLys, .y esw) = 0o w, fu,yo, ... ye z;w))
There is a circuit H' that computes k' which is in NC!. As a base case, we have:
FO,y2, sy w) = [ (y2, .. ye @5 w)

and f will itself call h” and f", etc. After £ steps, we get f¢ an NC' function
as in the base case. Let us call it g as above.

The circuitry that computes f is analogous to that given in figure 1. But,
in that case, the circuit for F' is made of a first layer of height O(log(n)) of H
circuit with one leaf (the base case) which is formed by a second layer of a tree
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of height O(log(n)) of H' circuit, and so on. The circuit remains uniform and its
size is of the form >, | IH[+ 3, ([H'[+-+ 3, |HO| +1G|.

What is the height of the circuit? The first layer has height O(log(n)) x
O(log(n)) as in the base case. The second layer has also height O(log(n)) x
O(log(n)) for the same reason. More generally, the height of the tree is ¢ x
Ollog(n)?) = O(log(n)?).

Concerning the size of the circuit. The first layer is formed of log(n) circuits
of size 200°8() that is bounded by a polynomial. Actually, all layers have
polynomial size. Since there is only a finite number of such layers, there is a
polynomial number of circuit of polynomial size.

Following the scheme of this proof, the result can be extended to arbitrary
k > 2 and together with Lemma 2 we have:

Theorem 6. For every k > 1:

Tk C NC*.

4 The (Unsharp) Lower Bound

We adopt the description of NC* in terms of ATMs, cf. Theorem 1. Here ATMs
are assumed to have only one tape. Each machine has a finite number of inter-
nal states and each state is classified as either conjunctive, disjunctive, oracle,
accepting or rejecting. Oracle, accepting or rejecting states are halting states.
Conjunctive or disjunctive states are action states. Outputs are single bits —
no output device is required. A configuration is composed by the tape contents
together with the internal state of the machine.

As Leivant in [Lei98] we describe the operational semantics of an ATM M as
a two stage process: Firstly, generating an input-independent computation tree;
secondly, evaluating that computation tree for a given input. A binary tree T
of configurations is a computation tree (of M) if each non-leaf of T spawns its
children configurations. A computation tree of M is generated as follows: when
in a configuration with an action state, depending on the state and bit read, it
spawns a pair of successor configurations. These are obtained from the parent
by changing the read bit, or/and changing the internal state of the machine. We
will be interested in configuration trees which have the initial configuration of
M as a root. Each computation tree T maps binary representation of integers
(inputs) to a value in {0,1, L}, where L denotes “undefined” — in our term
systems | will be represented by 0 0. This map is defined accordingly points 1
and 2, below.

1. If T is a single configuration with state ¢ then:

(a) if ¢ is an accepting [rejecting] state, the returned value is 1 [respectively,
0J;
(b) if ¢ is an action state, the returned value is L;
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(¢) if ¢ is an oracle state (4, j), where 7 is a symbol of the machine’s alphabet
— 0 or 1 — and j ranges over the number of oracles, the returned value
is 1 or 0 depending on whether the nth bit of the jth oracle is ¢ or not,
where n is the integer binary represented by the portion of the tape to
the right of the current head position.

2. If T is not a single configuration, then the root configuration has a con-
junctive or a disjunctive state. We define the value returned by T to be
the conjunction, respectively the disjunction, of the values returned by the
immediate subtrees.

Conjunctive and disjunctive states may diverge, indicated by the “undeter-
mined value” 1; one understandsOV L =1,1V.L=10AL=0,1A1L=_1.

Theorem 7
NC? C T3,

Proof The proof runs along the lines of the proof of [BO04, Lemma 5.1].

Let M be a ATM working in O(log®n) time and O(logn) space. Let us say
that, for any input X, M runs in time Th; = to" ' + t; and space Sy =
s0" 451, where @ is a minimal balanced tree corresponding to X, as in [BO04].

The proof is now based on the idea of configuration trees. A configuration tree
for M contains as paths all possible configuration codes of M.2 A configuration
tree for time t will code on the leafs the values at level ¢ in the bottom-up
labeling of the computation tree.

Now, the proof can be split in several steps.

Coding Configurations. A configuration of M is given by a sequence of triples
which encode the content of the tape together with information about the posi-
tion of the head, and, in addition, a encoding of the current state. Padding the
tapes with blanks we can assume that we have fixed tape length [. To code the
three symbols 0, 1 and blank we will use two bits, (0,1), (1, 1), and (0, 0) respec-
tively. Now a triple x; = (a4, b;, ¢;) in the sequence xg, . . ., z; codes the symbol
of cell [ by a; and b;, and ¢; is 1 only for the position of the head at the current
state and 0 for all other cells. Finally we add a code w for the current state
at the end of this sequence, such that a configuration is uniquely determine by
the bit string xg, ..., x;, w which has a fixed length for all configurations. In the
sequent by configuration we mean the path containing the configuration code as
described above.

The label® function. Given a configuration p and an input z, the function
LABELY(;; p, x; ) returns 1, 0 or 0x0 depending on the configuration and the input
a: 1 if the configuration leads to the acceptance of z, 0 if it leads to rejection,
and 0 * 0 if p is a non-halting configuration. LABEL’(; ; p, z; ) can be defined by
composition and simultaneous recursion over tier 1. Since simultaneous tier 1
recursion can be simulated in 7' (lemma 4), LABEL’ is a NC? function.

2 In fact, such a tree will have a lot of branches which do not represent configurations;

but these branches will not disturb.
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Configuration trees. The configuration tree of time 0 is a perfect balanced
tree of hight 3so"2" 4+ 351 + m, labeled by 0, 1, or 0 % 0, according to LABEL?,
where m is the length needed to represent w (the code of the state). Its branches
“contain” all possible configurations. A branch p is labeled by 1 if p accepts z,
by 0 if p rejects x, and by 0 % 0 otherwise (i.e. if p has an action state or if it is
not a configuration).

We define cT§, 5, .., by meta-induction on the second index with a side-
induction on the first index in the base case. Note that this definition requires
space recursion, i.e., recursion in tier 1. It calls in the base case LABEL?, which
also needs a space recursion. Since this is in the base case, we do not need
(step-)nested recursion here.

et o(;;p,u, ;) = LABEL (5 p, 7;), (1)
CTh 1 0Gip, 0,25) = CT) o (51 py @, 33), (2a)
CTo 10630 La;) = T o (55 p, @, 57), (2b)

CT2+1,0(§ I, UKV, T;) = CT2+1,0(§ spx0,u,x;) * CT2+170(; ipxLv,x;), (20
CT) i Gspou,m;) = 010 4 (59 * 0,0, 3 ) % CTY (53 p * L, a3). (3)

Case (1) and the cases of (2) define cT) ; by meta-induction on a. Within this
definition, the cases (2a)—(2c) use tier 1 recursion. Finally, case (3) is the induc-
tion step for the definition of CTgyb by meta-induction on b.

Now, we define the initial configuration tree ¢ as follows.

c1’(s5 @) = CT84, 50, +m (30,2, 7).

Notice, that ¢T? is a NC! function.
The idea is now to update this configuration tree along the time the machine
is running.

The label™ function. One can define a function LABEL™! which for a configu-
ration p and a configuration tree z, returns 0, 1 or 00 according as configuration
p is rejecting, accepting or undetermined, using the labels of the successor con-
figurations of p in z.

LABELT! uses simultaneous tier 1 recursion.

Note, that LABELT! is a NC! function.

The update function. The aim of the function c¢TT! is to update a configura-
tion tree for time ¢ to the configuration tree at time ¢+ 1. Here, we need the space
recursion with step function * and base function LABELT!, in order to build a
copy of the given configuration tree where the leaves are updated according to
LABELTL.

We define CT;}, in analogy to CTg’b by meta-induction on a and b.

1o (s p,u, w5 2) = LABELT! (35 p, 25 2)

cT il oGs5p,0,252) = CTh (s p, @, 75 2),
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el oGsp L as2) = i (s p, @, @5 2),

eTily oGipus v, ws2) = Ol o (ip* 0,u, 23 2) % CTHL o(3p* 10,23 2),
CT:},H(; DU, T Z) = CT:},(; ip*x0,u,x; 2) * CT:})(; ip* 1 u,x; 2).

The update of a configuration tree for time ¢ is the configuration tree for time

t+ 1. For a given configuration tree z, such an update can be performed by the
function cTt!:

1 1
et m;2) = CT:,TSO’SSIJFm(; 0,2, x5 2).
Note, that cTt! is a NC! function.

The iteration. The iteration function iterates the update function to"x 2 +¢;
times.

We define it by use of two auxiliary functions 17! and 172, 1T! iterates the
update function a"x7 times; IT? iterate then 17! "2 times and add b more
iterations of the update function.

For a given natural number n, let ¢TT"(;;x;2) be the cTt! function com-
posed with itself n times. Thus, in an inductive definition of cTT" we have that
ottt (5r 2 2) is defined as Tt (5525 e (5 13 2)).

— 17! is defined by recursion in tier 2.

T (;0; 25 2) = 2,
1/, o _ Fto (.. e ypl(e oy e
IT Gy + Lyz;2) =T (5 21T (G s 5 2) ).

— 172 is defined by recursion in tier 3:

1?03y @52) = €T (5325 2),
T2 (u + 13y 23 2) = 1T (g 2 102 (w; 95 25 2)).

Note, that 17! and 172 are the only non NC! functions needed in this proof.
Now, we just have to iterate the ¢TT! function Tys times, on the initial con-
figuration tree ¢, in order to obtain the configuration tree cT™™:

o™ (2) = 11 (5 25 25 1055 27)
Finally, recursing on « we can follow in ¢T™ the path corresponding to the

initial configuration and we read its label: 0 or 1.

5 Conclusion

Putting together the theorems 5 and 7 one gets:

Theorem 8
T?> C NC* C T3
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As stated in the proof of theorem 7, only the functions which are performing
the iteration are not NC! functions. The higher tiers are used only for the
iteration. It is straightforward that one additional tier on top enables us to
define an iteration of the update function log(n) times the length of iteration
definable by use of the lower tiers. Together with the extension of the upper
bound to T*, stated in theorem 6, one gets:

Theorem 9. For k > 2 we have:
T+ C NCk C T+,

As a corollary we get another characterization of NC' as the union of the the
term systems T%, k € IN:

Corollary 10
NC= | T"

keIN
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Abstract. Rational graphs are a family of graphs defined using labelled
rational transducers. Unlike automatic graphs (defined using synchro-
nized transducers) the first order theory of these graphs is undecidable,
there is even a rational graph with an undecidable first order theory.
In this paper we consider the family of rational trees, that is ratio-
nal graphs which are trees. We prove that first order theory is decid-
able for this family. We also present counter examples showing that this
result cannot be significantly extended both in terms of logic and of
structure.

1 Introduction

The algorithmic study of infinite object has achieved many success through the
use of finite automata. This concise and efficient model was first introduced to
characterize word languages in the late fifties, since then it has been extended
and generalized in order to define infinite words, relations, relational structures,
group structures, or graphs.

In 1960 Biichi, [Biic60], used finite automata to characterize infinite words,
and so proving the decidability of monadic second order logic of the integers with
the successor relation. Almost ten years later, this result was extended to the
complete binary tree by Rabin [Rab69]. For many years adhoc extensions were
proposed. Later on, around the year 1990 Muller and Schupp, then Courcelle and
finally Caucal proposed generalizations of Rabin’s result based on transformation
of the complete binary tree [MS85, Cou90, Cau96].

Another way of using finite automata in the theory of finitely presented infi-
nite objects was introduced by Hodgson [Hod83], simply using finite automata
to define relational structures, obtaining the decidability of first order logic.
Later on, nurturing from group theory [ECH"92], Khoussainov and Nerode for-
malized and generalized the notion of automatic structure (and graph) [KN94].
Independently Sénizergue, and later on Pelecq considered a slightly different
notion of automatic structure, involving an automatic quotient [Sén92, Pé197].
Several investigations, as well as an extension of first-order logic were conducted
by Blumensath and Grédel on automatic structures [BG00]. In 2000 the notion
of rational graphs was investigated [Mor00], this general family had already been
defined as asynchronous automatic by Khoussainov and Nerode, but it was not
very satisfactory from the logical point of view.

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 225-239, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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In most of these cases the decidability of the logic comes from the underlying
automaton, or more generally from closure properties. An interesting question
is to know whether some structural restriction of these families would yield
better decidability results. For automatic structures recently Khoussainov et alii
considered automatic trees [KRS05], and have been able to disclose properties
of these trees, like their Cantor-Bendixson rank, or the existence of a rational
infinite path.

In this paper we consider rational trees, that is rational graphs that are trees.
We first define carefully this family, state a few basic results, and give simple
examples. We then use Gaifman’s theorem and compositional methods [She75,
Zei%4] to prove that their first order logic is decidable. As it is not the case for
general rational graphs, it heavily relies on the tree structure, and need a deep
investigation. Finally we explore the boundaries of this result by exhibiting a
rational directed acyclic graph with an undecidable first-order theory, and also
a rational tree with an undecidable first-order theory enriched with rational
accessibility.

2 Preliminaries

In this section we will recall the definition of the family of rational graphs.
More details can be found in [Mor00, MS01]. We also state some properties of
automatic graphs [KN94].

For any set E, its powerset is denoted by 2F; if it is finite, its size is denoted
by |E|. Let the set of nonnegative integers be denoted by N, and {1,2,3,...,n}
be denoted by [n]. A monoid M is a set equipped with an associative operation
(denoted -) and a (unique) neutral element (denoted €). A monoid M is free
if there exist a finite subset A of M such that M = A* := (J, .y A" and for
each u € M there exists a unique finite sequence of elements of A, (u(i))icm),
such that v = u(1)u(2) - - -u(n). Elements of a free monoid will be called words.
Let v be a word in M, |u| denotes the length of u and (i) denotes its ith
letter.

2.1 Rational Graphs

The family of rational subsets of a monoid (M, -) is the least family containing
the finite subsets of M and closed under union, concatenation and iteration.

A transducer is a finite automaton labelled by pairs of words over a finite
alphabet X, see for example [AB88] [Ber79]. A transducer accepts a relation in
X*x X*; these relations are called rational relations as they are rational subsets
of the product monoid (X*x X*, ).

Now, let I" and X be two finite alphabets. A graph G is a subset of X*xI"x X*.
An arcis a triple: (u,a,v) € X* x I' x X* (denoted by u % v or simply u % v

if G is understood).
Rational graphs, denoted by Rat(X™* x I' x X*), are extensions of rational
relations, characterized by labelled transducers.
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Definition 2.1. A labelled transducer T = (Q,I, F,E, L) over X, is composed
of a finite set of states (), a set of initial states I C @, a set of final states F' C @,
a finite set of transitions (or edges) E C Q x X*x X*x @ and a mapping L from
F into 27"

An arc u — v is accepted by a labelled transducer T if there is a path from a
state in I to a state f in F labelled by (u,v) and such that a € L(f).

Definition 2.2. A graph in 2% X" ig rational if it is accepted by a labelled
rational transducer.

Let G be a rational graph, for each a in I" we denote by G, the restriction of G
to arcs labelled by a (it defines a rational relation between vertices); let u be a
vertex in X*, we denote by G, (u) the set of all vertices v such that u % v is an
arc of G.

Example 2.3. The graph on the right is generated by the labelled transducer
on the left.

e — 0 lb 001
lb 01 lb

L - 1 lb 011
‘C\ 11 lb

‘0\111

~
~
~

The path p oo, Q1 LN ro LLN ro accepts the couple (001,011), the final

state ro is labelled by b thus there is a arc 001 2,011 in the graph.

The trace of a graph G from an initial vertex i to a final vertex f is the set of
path labels labelling a path from i to f. For example the trace of the graph from
Example 2.3 between ¢ and L is the set {a™b"c™ | n > 0}.

Theorem 2.4 (Morvan, Stirling 01). The traces of rational graphs from an
nitial to a final vertex is precisely the context-sensitive languages.

2.2 Automatic Graphs

A classical subfamily of rational graphs is formed by the set of automatic graphs
[KN94, Pé197, BGO0O].
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These graphs are accepted by letter-to-letter transducers with rational termi-
nal functions completing one side of the accepted pairs and assigning a label to
the arc.

As the terminal function is rational, it can be introduced in the transducer
adding states and transitions. A left-synchronized transducer is a transducer such
that each path leading from an initial state to a final one can be divided into two

A
parts: the first one contains arcs of the form p A8, q with A, B € X while the

A
second part contains either arcs of the form p Ale, q with A € X or of the form
B
P /B, g with B € X (not both). Right-synchronized transducers are defined

conversely.

Definition 2.5. A graph over X* x I' x X* is automatic if it is accepted by a
left-synchronized or right-synchronized labelled transducer T

Example 2.6. The graph defined by Example 2.3 is automatic. The relation
() is synchronized. And the relations G, and G, are right-automatic.

The next result follows from the fact that automatic relations form a boolean
algebra.

Proposition 2.7. The first-order theory of automatic graphs is decidable.

The Theorem 2.4 was extended to automatic graphs by Rispal in [Ris02].

Theorem 2.8 (Rispal 02). The traces of rational graphs from an initial to a
final vertex is precisely the context-sensitive languages.

3 Rational Trees, Examples and Boundaries

Trees are natural structures in computer science. A lot of families of trees oc-
curred outside of the study of infinite graphs. For example, regular trees that
have only a finite number of sub-trees up to isomorphism, algebraic trees which
are the unfolding of regular graphs [Cau02], or also trees that are solutions of
higher order recursive program schemes [Dam?77].

Definition 3.1. A rational tree is a rational graph satisfying these properties:

(i) it is connected;
(ii) every vertex is the target of at most one arc;
(iii) there is a single vertex with in-degree 1, called the root.

Each vertex of a rational tree is called a node. The leaves are vertices that are
not source of any arc.
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3.1 Elementary Results

The properties (i7) and (44) from Definition 3.1 are easy to verify: (ii) consists
in checking that the relation J,. F(i)_l is functional. This is solved using
Shutzenberger’s theorem, see among others [Ber79]. The condition (%) consist
in checking that the rational set Dom/(T) \ Im(T) has only one element.

In order to prove that it is undecidable to check whether a rational graph is
a tree, we use a variation of the classical uniform halting problem for Turing
machines.

Proposition 3.2. Given any deterministic Turing machine M, a deterministic
Turing machine M' may be constructed such that: M halts on ¢ if and only if
M’ halts from any configuration.

Proposition 3.3. Given any deterministic Turing machine a rational (unla-
belled) graph G(M) may be constructed in such a way that: M halts from any
configuration if and only if G(M) is a tree.

Proof. Let us consider the deterministic Turing machine M = (Q,T, 6, o), @
is the set of states (with go € @ the initial state), T the set of tape symbols
(including two special symbols $ and # denoting the extremities of the tape)
and 6 : Q@ X T — Q x T x {l,r,p} the transition function.

We define the configuration of such a machine in the usual way: uqv, with
g€ Q,ues(T+0)*ve (T+0)%, and O denoting the empty space.

We define G(M) in this way: the vertices are precisely the configuration of
the machine plus a special vertex $#.

The arcs consist of the transitions of the machine going backwards, and of
the set {s#} x {suqAv# | (¢, A) € Dom(6) Au,v € (T +DO)*}.

The vertex s# is the only vertex which is not the target of any arc (condition
(#4)), and as the machine is deterministic and the arcs go backward, this graph
satisfies also the condition (i:). Furthermore this graph is connected if and only
if the machine M reaches, from any configuration, a configuration in which there
is no possible transition. a

From these two results considering a deterministic Turing machine we construct
a second one that halts on every input if the first one stops from the empty
word. Now using Proposition 3.3, we construct a rational graphs which is a tree
if and only if the second machine halts one every input. This proves the following
proposition.

Proposition 3.4. It is undecidable to know whether a rational graph is a tree.

We conclude this subsection by a simple result, which is a direct consequence of
the rationality of the inverse image of a rational relation, and the fact that all
vertices are accessible from the root.

Proposition 3.5. Given any rational tree, accessibility and rational accessibil-
ity are decidable for any given pair of vertices.
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3.2 The 2™-Tree

We give here a first example of rational tree. Indeed this tree is automatic. It is
defined by a line of a’s, and the nth vertex of this line is connected to a segment
of 2™ b’s.

0/0 A —2» 40 —2+ 400 —2+ 4000 - - - — -
a

e 0 00 000

@ b 1 01 001
|
10 :
|
b |
11 |

The encoding of the vertices of this tree relies on the fact that there are 2™
n-tuples over {0, 1}. The transducer performs the binary addition.

3.3 A Non-automatic Rational Tree

We now construct a rational tree of finite, yet unbounded, degree which is not
automatic.

This tree is obtained from a rational forest by the adjunction of a line connect-
ing the roots of each connected component. As these roots form a rational set
of words, the following lemma allows construct such a line while still obtaining
a rational tree.

Lemma 3.6. Given a rational language L, the graph whose vertices are the
words of L connected into a half line in length-lexicographic order is an automatic
graph.

This result is obtained by remarking that the length-lexicographic order (as a
relation on words) is an automatic relation, and using closure properties of these
relations.

Our example relies on the limit of the growth rate of automatic graphs of
finite degree. For such an automatic tree, an obvious counting argument ensures
that there exists p, ¢ and s such that there are at most p?™*¢ vertices at distance
n of the root.

Therefore the tree (we call it simplezp) such that each vertex of depth n has 2"
sons, has precisely 2("~1)/2 vertices of depth n, and is therefore not automatic.

Still it is the connected component of a rational forest F' and the tree con-
structed from F' using the Lemma 3.6 has the same growth and therefore is not
automatic, up to isomorphism. For simplicity we only present the forest F' and
a transducers generating it:
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A0

€
A00A Al10A

N W |
NN |

AO0A0A AO00A1A A10A0A Al0A1lA |

In this forest the connected component of € is simplexp. Each vertex of depth
n has precisely n occurrence of A and thus 2" sons. Furthermore this transducer
is co-functional, and strictly increasing, therefore each connected component is a
tree with root. We have, thus, constructed a rational tree of finite degree, which
is, up to isomorphism, not automatic.

4 First-Order Theory of Rational Trees Is Decidable

In this section we use Gaifman’s theorem (see, e.g., [EF95]) to prove that the
first-order theories of rational trees are decidable. This result, which is not
true for rational graphs in general, was conjectured in [Mor01]. We will see, in
Section 5, that there are no obvious extensions of this result.

4.1 Logical Preliminaries

We introduce basic notations on first-order logic over relational structures.

A relational signature X is a ranked alphabet. For every symbol R € X, we
write |R| > 1 the arity of R. A relational structure M over X is given by a
tuple (M, (RM)rex) where M is the universe of M and where for all R € X,
RM C MBI

Let V be a countable set of first-order variables. We use z, ¥, z . . . to range over
first-order variablesin V and Z, g, Z, . . . to designate tuples of first-order variables.
An atomic formula over X is either R(z1,...,zp)) for R€ Y and x1,...,2/5 €
V or x =y for z,y € V. Formulas over X (X-formulas) are obtained by closure
under conjunction A, negation — and existential quantification 3 starting from
the atomic XY-formulas. The bounded and free variables of a formula are defined
as usual. A formula without free variables is also called a sentence. We write
©(Z) to indicate that the free variables of ¢ belong to z.

For every relational structure M, any formula ¢(z1,...,z,) and a1,...,a,
in M, we write M E ¢lag,...,a,] if M satisfies the formula ¢ when z; is
interpretated as a;. If ¢ is a sentence, we simply write M | ¢. Two sentences
© and 1 are logically equivalent if for all structure M, M |= ¢ iff M 9.

The quantifier rank qr(yp) of a formula ¢ is defined by induction on the struc-

ture of ¢ by taking qr(¢) = 0 for ¢ atomic, qr(p A ¥) = max{qr(p), qr(e)},
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qr(—¢) = qr(y) and qr(3x¢) = qr(y) + 1. For a fixed signature X, there are
countably many X-sentences of a given quantifier rank. Up to logical equivalence
there are only finitely many such sentences, but this equivalence is undecidable.
A classical way to overcome this problem is to define a (decidable) syntactical
equivalence on formulas such that, up to this equivalence, there are only finitely
many formulas of a given quantifier rank (see e.g. [EF95]).

We define for all rank k£ > 0 a finite set Normf of normalized X-sentences
such that for every X'-sentence ¢ we can effectively compute a logically equivalent
sentence Norm(y) in Norm;-. Note that this set is finite and computable.

ANA* (%) = {y,~¢ | ¢ atomic over X with free variables in Z }
Normy (Z) =1 Vger Npere | R C ANATE®) }
Y=
Normj’, ,(z) = Vieer Nper® | R C ol Fvevue | peNomi(.y) } }
where y & T.

The k-theory of a structure M over X' is the finite set
Thmi(M) :={¢|pe Norm;’ and M = ©}.
We write Thmy = oNormi’ the set of all possible k-theories!.

4.2 Gaifman’s Theorem for Graph Structures

We now focus our attention on graph structures and particularly on trees. A
graph structure is a relational structure over a signature with symbols of arity
2. To every graph Y-structure is associated a graph labelled by the symbols of
J). We say that a graph structure is a tree structure if the associated graph is a
tree. For all tree structure 7, we write (7)) € T the root of 7. For all u € T,
we write 7/, the subtree of 7 rooted at u and for all n > 0, ’T/’L the tree 7,
restricted to the elements of depth at most n.

We recall Gaifman’s Theorem, which states that every first-order formula is
logically equivalent to a local formula.

In order to define local formulas, it is first necessary to define a notion of
distance. In the following, we write d(z,y) < n (resp. d(z,y) < n) the first-order
formula expressing that the distance, without taking the orientation of the arcs
into account, between x and y is less or equal to n (resp. less than n).

We denote by S(r, z) the ball of radius r centered at x: {y | d(z,y) < r}

We now need to restrict a formula ¢(z) to a ball of radius r centered at x:
we denote by ¢5("*) the restriction of formula ¢(z) to the ball of center 2 and
radius r. This notation is defined by renaming each bound occurrence of z in ¢
by a new variable, and localizing each quantification:

[ElZ(p]S(T,I) = E'Z(d(,]j’ z) <rA (pS(r,x))

! Remark that Thmy; contains elements that are not the k-theory of any structure.
For instance, an element of Thmj; may contain both ¢ and —p.



On Rational Trees 233

A basic local formula is of the the form:

R =t /\ (d(xs,25) > 2r A5 (1))

1<i<j<n
A local sentence is a boolean combination of basic local sentences.

Theorem 4.1 (Gaifman). Every first-order sentence is logically equivalent to
a local sentence.

Note that the equivalence stated in this theorem is effective.

4.3 Compositional Results for Trees

We present basic compositional results for trees that will allow us to characterize
the center of the balls involved in the definition of basic local formulas. The
compositional method is a powerfull way to obtained decidability results mainly
developed in [She75] (see [Zei94, Rab06] for a survey). The results presented
here are not new and could, for example, be derived from the general templates
presented in [Zei94, Rab06].

For every tree structure 7 over the signature X = {F}, ..., E¢} and for every
k > 1, we define the reduced tree of T, the structure <7 >} over the monadic

signature < X >j:= {S1,..., S/} U { Py | M € Thmy } The universe of <7 >

is the set of successors of the root of 7. The predicats in < X' >, are interpreted
as follows: for all i € [(], u € S>> iff (r(T),u) € EI and for all M € Thmj’,
u € Py iff Thm(7,) = M.

Example 4.2. In the following picture we illustrate a reduced tree.

r

T

<7T>
1 L \2 §

51
q S t q e

The tree depicted on the left is defined over X' = {Fj, Es}, the reduced
tree < 7 >} is defined over < X >j:= {S1,52} U {PM | M € Thmy” }; and
Thmk(T/q) = Thmk(’]—/s) = M, Thmk(T/t) = M-

Lemma 4.3. For all tree structure T over X = {Ey,...,E;} and all k > 1,
Thmg(7) can be effectively computed from Thmpy(<7T >p11).
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Remark 4.4. As the signature of <7 >}, is monadic, every formula is equivalent
to a boolean combinaison of formulas of the form

dz1,. .., T /\3327&1‘] A /\ P(x;) A /\ = P(x;).

i#£j PER €[] PER,i€[()
where P C< X >. See, for example, the Exercise 2.3.12 of [EF95].

The following lemma allows to compute the theory of a ball in a tree from the
theories of some subtrees contained in that ball.

Lemma 4.5. For all tree T over a signature X = {FE1,..., E¢} and any vertex
u € T with a path upaiuy ... Uy (With w, = u), from the root of T and any
rank k > 1 and any depth n > 0, there exists a constant p effectively computable
from m, n and k such that for any formula o(x) with qr(yp) = k, we can decide
whether T |= @) [u] from the sequence of labels aj . .. a,, and from (Thm,(<

77111,1 >p))i€[0,m] :

4.4 First-Order Theory of Rational Trees

We now tackle the proof of the decidabilty of the first-order theories of rational
trees using Gaifman’s Theorem.

The first step is to use the results from Subsection 4.3 to prove that for all
r > 1 and for all formula (z), the set of centers of a ball of radius r satisfying
@(z) (where z is interpreted as the center of the ball) form a rational set of
words.

We start by showing that the set of roots of a subtree of a certain depth
having a given k-theory form a rational set of words. In order to apply Lemma
4.3, we need the following key lemma concerning rational trees.

Lemma 4.6. For all rational tree T labelled by I' and over X*, all i € I' and
L € Rat(X™), the set of u € Dom(T') having a least £ successors by i in L is
rational and can be effectively constructed.

Proof (Sketch). The proof relies on the fact that the in-degree of a tree is of at
most one. We use the uniformazition of rational relations [Eil74, Ber79] which
states that for every transducer? H there exists a functional transducer ﬁ such
that H C H and Dom(H) = Dom(ﬁ). As the in-degree of T is at most one,
if we restrict H; (the transducer accepting the i-labelled arcs of T restricted in

image to L) to the rational set X*\ Im(f_I;) to obtain a transducer H/, we have
decreased the out-degree of H; by exactly 1. Hence the set of vertices having at
least 2 successors by i is Dom(H]). The proof then follows by a straightforward
induction. O

Remark 4.7. Note that this result does not hold when the in-degree is greater
than 1. Consider for example, the transducer H depicted bellow. The set of

2 We do not distinguish between the transducer and the relation it accepts.
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words having exactly 1 image by H is the context-free language containing the
words having the same number of a’s and b’s.

afe,b/a ala,b/e
([ ()

Lemma 4.8. For all rational tree T labelled by I' = [¢], all k > 1, n > 1, and
all sentence ¢ over X = {E1,...,Es} or over <X >y, the sets:

~Ln = {ue Dom(T) | <Tf >4k o)
— L7 :={u € Dom(T) | 1/, EFo}

are rational and effectively computable.

Proof (Sketch). We prove both properties simultaneously by induction on the
depth n.

For the basis case n = 0, remark that for all rational tree T', TV is reduced to
a single vertex and for all k > 1, <T% > is empty. As these structures are finite,
we can decide for all formula ¢ if it is satisfied by the structure. Accordingly,
LY and LY are either the § or Dom(T).

For the induction step n+1. Let £ > 1 be a rank and ¢ be < X' >-sentence. By
Remark 4.4, we can restrict our attention to formulas stating there exists at least
m elements belonging to S~ and Py~ * for some i € [(] and M € Thmj; .

Let m > 0, i € [¢(], M € Thm;’ and ¢ the corresponding formula. By induc-

tion hypothesis, the set of vertices X := {u € Dom(T') | Thmy(7};,) = M} is

rational and computable. It is easy to check that for all u € Dom(T), <T/”uJrl >

satifies ¢ if and only if u has m successors by i belonging to X. By Lemma 4.6,
the set L" ¥ is rational.
The second property follows then by Lemma 4.3. ad

It then follows by Lemma 4.5 and 4.8 that:

Lemma 4.9. For all rational tree T labelled by I = [¢],all formula p(z) over
Y ={Ei,....,E} andn > 1, the set { u € Dom(T) | T = 5" [u] } is rational
and can be effectively computed.

Before applying Gaifman’s theorem we need a last property of rational trees.

Lemma 4.10. For all rational tree T with vertices in X*,L. C Dom(T) €
Rat(X™*) and for all r > 1, we can decide if there exists u1,...,un € L such
that for all i # j € [m] d(u;,u;) > 7.

We can now use Gaifman’s theorem to obtain the decidability of the first-order
theory of rational trees.

Proposition 4.11. FEvery rational tree has a decidable first-order theory.
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Proof. By Gaifman’s theorem 4.1, it is enough to decide basic local sentences. Let
T be a rational tree and ¢ = Jz1 ... 3z N\ ;o <, (d(i,25) > 2r A S (1) (1))
be a basic local sentence.

By Lemma 4.9, the set L = { u € Dom(T) | 7 |= ¢5("®)[u] } is rational.

To conclude, by Lemma 4.10, we can decide if there exists us, ..., u, € L such
that for all i # j € [n] d(u;,uj) > 2r.
Combinning these two results , we can decide wether T satisfy (. O

Due to the use of Gaifman’s Theorem, the complexity of this decision procedure
is non-elementary. However if we only consider rational trees of bounded out-
degree, we can obtain an elementary decision procedure using the same technic
as for the automatic graphs of bounded degree [Loh03].

5 Discussion on Extension of This Result

In this section, we illustrate that the result we have proved in previous section is
in some sense maximal. We will first show that first-order theory together with
rational accessibility is undecidable for rational trees. Then we will construct a
rational directed acyclic graph with an undecidable first-order theory.

5.1 Finding a Wider Decidable Logic

An obvious extension of first-order logic is first-order logic with accessibility,
which is simply first-order theory in the transitive closure of the original struc-
ture. A broader extension is first-order logic with rational accessibility. For every
rational language L € Rat(I™*) we add, to the first-order logic, a binary predi-
cate reach;, meaning that the first vertex is connected to the second by a path
in L.

We now prove that, even though Proposition 3.5 states that accessibility and
rational accessibility are decidable for rational trees, first-order logic with ratio-
nal accessibility is undecidable.

We use the grid (a quarter plane), with backward arcs. It is a rational graph:

a a
—a
I3 A AZ***

We simulate two counters machines on the unfolding of this graph. As these
machines may test for zero, we add a loop on each vertex expressing that either
counter, both or none is empty (denoted respectively by #g, #p, #ap, #)-
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In order to unfold the resulting graph we transform the transducer to add
the path leading to the vertex. Because the graph is both deterministic and co-
deterministic, this yields a deterministic rational forest. This forest is composed
of rooted connected components. The connected component with root € is iso-
morphic to the unfolding of the grid with backward arcs (like each connected
component with root in {a, b,a, b}*) The transducer for arcs labelled a is the
following:

A/A B/B /e @€ {aba,b oy, #ys Hars # )
s o
e/ - e/e Q! e/a @ .

The transducers for b, a and b are similar. The transducers for #,, #p, #41, # are
the identity for the first part, and correspond to empty A, B, both or none.

Now we have a rational forest. We simply have to transform it into a rational
tree. Again we use Lemma 3.6. Finally for each Minsky machine M we define a
rational language Lps of its behaviour, and use this first-order formula to check
whether it reaches empty counters (which is undecidable):

JuTv(reachy,,, (u,v) Aroot(u) A =(Fw(v S w Vv L w))).

We have, thus, found a rational tree with undecidable first-order theory with
rational accessibility.

Remark 5.1. Indeed it is possible to improve this result in creating an ad hoc
graph for encoding each machine. In this case it is first-order with accessibility
which is undecidable for the whole family (and not just a single graph). Also it
is possible to transform the tree in order to have an automatic tree.

5.2 Broaden the Graph Family

The first-order theory of rational graphs is undecidable. Indeed there are rational
graphs with an undecidable first-order theory. Now we construct such a graph
that is a directed acyclic graph (dag for short). This emphases the fact that the
decidability of first-order theory of rational trees is deeply connected to the tree
structure of these graphs.

Proposition 5.2. There exists a rational directed acyclic graph with an unde-
cidable first-order theory.

Proof (Sketch). The construction of this dag (denoted G, ) relies on an encoding
of every instance of the Post correspondence problem (pcp for short).

The precise construction of G,., is intricate. Thomas gives a similar con-
struction in [Tho02], he construct a rational graph with undecidable first-order
theory. It relies on the encoding of a universal Turing machine, and a simple
formula detecting a loop depending on the instance of pcp, this example does
not translate obviously for dag.
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An instance of pep is a sequence ((u;, v;))ig[n], and the problem is to determine
whether there is a word w such that w = u;, ws, ... wsy, = v, 0i, ... v, for some
integer k, and a sequence (i¢)¢ec[x) of elements of [n].

The graph G,., is oriented so that no cycle can occur. There are three com-
ponents in this graph. The first one is the initialisation that produce all possible
sequence of indices. The second part, on one side substitutes k& by uj simulta-
neously everywhere it occurs, on the other side substitutes k& by vi. These two
paths are done separately. The third and final part of the graph joins the
branches to the v branches.

Now for any instance of pcp we construct a first-order sentence whose satis-
faction in G,., implies the existence of a solution of pcp for the corresponding
instance. Indeed the formula ensures that the initialisation process is done, that
the correct u;’s and v;’s are followed, and that both path meet. O

5.3 Conclusion

In this paper we have investigated some properties of rational trees. The main
result is that these graphs have a decidable first-order theory. This result is
interesting because it mostly relies on structural properties of this family.

It is well known that the first-order theory of automatic graphs is also decid-
able. It should be interesting to determine if there are larger families of rational
graphs with decidable first-order theory. It would also be interesting to be able
to isolate a family having first-order theory with accessibility decidable. It is
neither the case for automatic graphs, rational trees, and even automatic trees
(see Remark 5.1).

An unexplored aspect of this study is to consider the traces of these graphs.
The traces of automatic and rational graphs are context sensitive languages
[MS01, Ris02]. Our conjecture is that there are even context-free languages that
can not be obtained by rational trees, for instance the languages of words having
the same number of a and b.
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Abstract. A complete and decidable propositional logic for reasoning
about states of probabilistic sequential programs is presented. The state
logic is then used to obtain a sound Hoare-style calculus for basic prob-
abilistic sequential programs. The Hoare calculus presented herein is the
first probabilistic Hoare calculus with a complete and decidable state
logic that has truth-functional propositional (not arithmetical) connec-
tives. The models of the state logic are obtained exogenously by attach-
ing sub-probability measures to valuations over memory cells. In order
to achieve complete and recursive axiomatization of the state logic, the
probabilities are taken in arbitrary real closed fields.

1 Introduction

Reasoning about probabilistic systems is very important due to applications
of probability in distributed systems, security, reliability, and randomized and
quantum algorithms. Logics supporting such reasoning have branched in two
main directions. Firstly, Hoare-style [27,21,6] and dynamic logics [9,17] have been
developed building upon denotational semantics of probabilistic programs [16].
The second approach enriches temporal modalities with probabilistic bounds
[10,13,23].

Our work is in the area of Hoare-style reasoning about probabilistic sequential
programs. A Hoare assertion [11] is a triple of the form {&1} s {£{2} meaning that
if program s starts in state satisfying the state assertion formula &; and s halts
then s ends in a state satisfying the state transition formula &;. The formula &;
is known as the pre-condition and the formula & is known as the post-condition.
For probabilistic programs the development of Hoare logic has taken primarily
two different paths. The common denominator of the two approaches is forward
denotational semantics of sequential probabilistic programs [16]: program states
are (sub)-probability measures over valuations of memory cells and denotations
of programs are (sub)-probability transformations.

The first sound Hoare logic for probabilistic programs was given in [27]. The
state assertion language is truth-functional, i.e., the formulas of the logic are in-
terpreted as either true and false and the truth value of a formulas is determined
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FEDER grant SFRH/BPD/26137/2005.
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by the truth values of the sub-formulas. The state assertion language in [27] con-
sists of two levels: one classical state formulas v interpreted over the valuations
of memory cells and the second probabilistic state formulas £ which interpreted
over (sub)-probability measures of the valuations. The state assertion language
contain terms ([7y) representing probability of v being true. The language at
the probabilistic level is extremely restrictive and is built from term equality
using conjunction. Furthermore, the Hoare rule for the alternative if-then-else is
incomplete and even simple valid assertions may not be provable.

The reason for incompleteness of the Hoare rule for the alternative composi-
tion in [27] as observed in [27,17] is that the Hoare rule tries to combine absolute
information of the two alternates truth-functionally to get absolute information
of the alternative composition. This fails because the effects of the two alterna-
tives are not independent. In order to avoid this problem, a probabilistic dynamic
logic is given in [17] with an arithmetical state assertion logic: the state formu-
las are interpreted as measurable functions and the connectives are arithmetical
operations such as addition and subtraction.

Inspired by the dynamic logic in [17], there are several important works in
the probabilistic Hoare logic, e.g. [14,21], in which the state formulas are either
measurable functions or arithmetical formulas interpreted as measurable func-
tions. Intuitively, the Hoare triple {f} s{g} means that the expected value of
the function g after the execution of s is at least as much as the expected value
of the function f before the execution. Although research in probabilistic Hoare
logic with arithmetical state logics has yielded several interesting results, the
Hoare triples themselves do not seem very intuitive. A high degree of sophisti-
cation is required to write down the Hoare assertions needed to verify relatively
simple programs. For this reason, it is worthwhile to investigate Hoare logics
with truth-functional state logics.

A sound Hoare logic with a truth-functional state logic was presented in [6]
and completeness for a fragment of the Hoare-logic is shown for iteration-free
programs. In order to deal with alternative composition, a probabilistic sum
construct (§1+&2) is introduced in [6]. Intuitively, the formula (§; +&2) is satisfied
by a (sub)-probability measure p if pu can be be written as the sum of two
measures p; and po which satisfy & and & respectively. The drawback of [6]
is that no axiomatization is given for the state assertion logic. The essential
obstacle in achieving a complete axiomatization for the state language in [6] is
the probabilistic sum construct.

This paper addresses the gap between [27] and [6] and provides a sound Hoare
logic for iteration-free probabilistic programs with a truth-functional state as-
sertion logic. Our main contribution is that the Hoare logic herein is the first
sound probabilistic Hoare logic with a truth-functional state assertion logic that
enjoys a complete and decidable axiomatization.

We tackle the Hoare rule for the alternative composition in two steps. The first
step is that our alternative choice construct is a slight modification of the usual
if-then-else construct: we mark a boolean memory variable bm with the choice
taken at the end of the execution of the conditional branch. Please note that this
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does not pose any restriction over the expressiveness of the programming lan-
guage. This modification gives us a handle on the Hoare rule for the alternative
construct as all the choices are marked by the appropriate memory variable and
thus become independent. Please note that a fixed dedicated boolean register
could have been used to mark the choices. However, we decided to use a boolean
variable in the syntax because the Hoare rule for the alternative composition
refers to the marker.

The second step is that in our state assertion language, we have a conditional
construct (§/7). Intuitively, the formula (£/7) is satisfied by a (sub)-probability
measure p if £ is true of the (sub)-probability measure obtained by eliminating
the measure of all valuations where « is false. The conditional formulas (£/bm)
and (£/(—bm)) in the state logic can then be used to combine information of
the alternate choices.

The state assertion logic, henceforth referred to as Exogenous Probabilistic
Propositional Logic (EPPL), is designed by taking the exogenous semantics ap-
proach to enriching a given logic—the models of the enriched logic are sets of
models of the given logic with additional structure. A semantic model of EPPL
is a set of possible valuations over memory cells which may result from execution
of a probabilistic program along with a discrete (sub)-probability space which
gives the probability of each possible valuation.

Unlike most works on probabilistic reasoning about programs, we do not
confuse possibility with probability: possible valuations may occur with zero
probability. This is not a restriction and we can confuse the two, if desired, by
adding an axiom to the proof system. On the other hand, this separation yields
more expressivity. The exogenous approach to probabilistic logics first appeared
in [24,25] and later in [7,1,20]. EPPL is an enrichment of the probabilistic logic
proposed in [20]: the conditional construct (£/7) is not present in [20].

For the sake of convenience, we work with finitely additive, discrete and
bounded measures and not just (sub)-probability measures. In order to achieve
recursive axiomatization for EPPL, we also assume that the measures take val-
ues from an arbitrary real closed field instead of the set of real numbers. The first
order theory of such fields is decidable [12,3], and this technique of achieving
decidability was inspired by other work in probabilistic reasoning [7,1].

The programming language is a basic imperative language with assignment to
memory variables, sequential composition, probabilistic assignment (toss(bm, 7))
and the marked alternative choice. The statement toss(bm, r) assigns bm to true
with probability . The term r is a constant and does not depend on the state
of the program. This is not a serious restriction. For instance r is taken to be %
in probabilistic Turing machines.

One of the novelties of our Hoare logic is the rule for toss(bm,r) which gives
the weakest pre-condition and is not present in other probabilistic Hoare logics
with truth-functional state logics. The corresponding rule in the arithmetical
setting is discussed in Section 6. We envisage achieving a complete Hoare logic
but this is out of the scope of this paper.
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The rest of the paper is organized as follows. The syntax, semantics and the
complete recursive axiomatization of EPPL is presented in Section 2. The pro-
gramming language is introduced in Section 3 and the sound Hoare logic is given
in Section 4. We illustrate the Hoare calculus with an example in Section 5. Re-
lated work is discussed in detail in Section 6. We summarize the results and future
work in Section 7. For lack of space reasons, the proofs in the paper are omit-
ted and are available at http://wslc.math.ist.utl.pt/ftp/pub/SernadasA/
06-CMS-quantlog08s.pdf. Acknowledgements. We would like to thank L. Cruz-
Filipe and P. Selinger for useful and interesting discussions. We will also like to
thank the anonymous referees whose useful comments have greatly benefited the
presentation.

2 Logic of Probabilistic States — EPPL

We assume that in our programming language, there are a finite number of
memory cells of two kinds: registers containing real values (with a finite range
D fixed once and for all) and registers containing boolean values. In addition to
reflecting the usual implementation of real numbers as floating-point numbers,
the restriction that real registers take values from a finite range D is also needed
for completeness results. Please note that instead of reals, we could have also
used any type with finite range.

Any run of a program thus probabilistically assigns values to these registers
and such an assignment is henceforth called a valuation. If we denote the set of
valuations by V then intuitively a semantic structure of EPPL consists of V' C V),
a set of possible valuations, along with a finitely additive, discrete and bounded
measure 4 on ), the power-set of V. A finitely additive, discrete and bounded
measure p on ) is a map from pV to RT (the set of non-negative real numbers)
such that: (@) = 0; and p(Uy U Us) = p(Ur) + p(Us) if Uy NU; = 0. Loosely
speaking, u(U) denotes the probability of a possible valuation being in the set
U. A measure p is said to be a probability measure if x(V) = 1. We work with
general measures instead of just probability measures as it is convenient to do
so. We will assume that impossible valuations are improbable, i.e., we require
u(U) =0 for any U C (V\ V). Please note that u(U) may be 0 for U C V.

Furthermore, in order to obtain decidability, we shall assume that the mea-
sures take values from an arbitrary real closed field instead of the set of real
numbers. An ordered field K = (K, +,.,1,0, <) is said to be a real closed field if
the following hold: every non-negative element of the K has a square root in K;
any polynomial of odd degree with coefficients in K has at least one solution.

Examples of real closed fields include the set of real numbers with the usual
multiplication, addition and order relation. The set of computable real numbers
with the same operations is another example. A measure that takes values from
a real closed field K will henceforth be called a KC-measure.

Any real closed field has a copy of integers and rationals. We can also take
square roots and n-th roots for odd n in a real closed field. As a consequence,
we shall assume that there is a fixed set R of “real constants” for our purposes.
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A semantic structure of EPPL thus consists of a set of possible valuations, a
real closed field K and a KC-measure on pV. We will call these semantic structures
generalized probabilistic structures. We start by describing the syntax of the logic.

2.1 Language

The language consists of formulas at two levels. The formulas at first level, clas-
sical state formulas reason about individual valuations over the memory cells.
The formulas at second level, probabilistic state formulas, reason about general-
ized probabilistic structures. There are two kinds of terms in the language: real
terms used in classical state formulas to denote elements from the set D, and
probability terms used in probabilistic state formulas to denote elements in an
arbitrary real closed field. The syntax of the language is given in Table 1 using
the BNF notation and discussed below.

Table 1. Language of EPPL

Real terms (with the proviso ¢ € D)
t:=xmJz]c](t+1t)](tt)
Classical state formulas
yi=bm[b[ <) [ff](v=")

Probability terms (with the proviso r € R)

p=rlyl(fN]@+p) @) [7
Probabilistic state formulae:

=0T <p) [ (/I EDE)

Given fixed m = {0,...,m — 1}, there are two finite disjoint sets of memory
variables: xM = {xmy : k € m} — representing the contents of real registers,
and bM = {bmj, : k € m} — representing the contents of boolean registers. We
also have two disjoint sets of rigid variables which are useful in reasoning about
programs: B = {by, : k € N} — ranging over the truth values 2 = {ff, tt}, and
X = {zx : k € N} — ranging over elements of D.

The real terms, ranged over by t,t1, ..., are built from the sets D, xM and X
using the usual addition and multiplication'. The classical state formulas, ranged
over by v,71,. .., are built from bM, B and comparison formulas (p; < p2) using
the classical disjunctive connectives ff and =-. As usual, other classical connec-
tives (7, V, A, <) are introduced as abbreviations. For instance, (=) stands for
(v = ff).

The probability terms, ranged over by p,pi, ..., denote elements of the real
closed field in a semantic structure. We also assume a set of variables, Y = {yy, :

! The arithmetical operations addition and multiplication are assumed to be defined
so as to restrict them to the range D.



Reasoning About States of Probabilistic Sequential Programs 245

k € N}, ranging over elements of the real closed field. The term ([v) denotes
the measure of the set of valuations that satisfy . The denotation of the term
risrif0<r<1,0if r <0 and 1 otherwise.

The probabilistic state formulas, ranged over by &, &1, ..., are built from the
necessity formulas (Ov), the comparison formulas (p1 < p2), and conditional
formulas (/) using the connectives fff and D. The formula () is true when
v is true of every possible valuation in the semantic structure. Intuitively, the
conditional (£/7) is true in a generalized probabilistic structure if it is true in
the structure obtained by restricting the possible states to the set where + is true
and eliminating the measure of valuations which satisfy (—-y). Other probabilis-
tic connectives (8,U, N, ~) are introduced as abbreviations. For instance, (©¢)
stands for (£ D fff). We shall also use (0y) as an abbreviation for (&(O(—7))).
Please note that the O and ¢ are not modalities?.

The notion of occurrence of a term p and a probabilistic state formula & in
the probabilistic state formula £ can be easily defined. The notion of replacing
zero or more occurrences of probability terms and probabilistic formulas can also
be suitably defined. For the sake of clarity, we shall often drop parenthesis in
formulas and terms if it does not lead to ambiguity.

2.2 Semantics

Formally, by a wvaluation we mean a map that provides values to the memory
variables and rigid variables— v : (xM — D,bM — 2, X — D,B — 2). The set of
all possible valuations is denoted by V. Given a valuation v, the denotation of
real terms [t], and satisfaction of classical state formulas v I-c v are defined
inductively as expected. Given V' C V), the extent of v in V is defined as |v|,, =
{veV :vlrcy}.

A generalized probabilistic state is a triple (V, K, ) where V is a (possibly
empty) subset of V, K a real closed field and p is a finitely additive, discrete and
finite K-measure over p) such that u(U) = 0 for every U C (V \ V). We denote
the set of all generalized states by G.

Given a classical formula 7 we also need the following sub-measure of u:
ty = AU. p(|v|y). That is, p., is null outside of the extent of v and coincides
with p inside it.

For interpreting the probabilistic variables, we need the concept of an assign-
ment. Given a real closed field K, a K-assignment p is a map from Y to .

Given a generalized state (V, K, u) and a K-assignment p, the denotation of
probabilistic terms and satisfaction of probabilistic state formulas are defined
inductively in Table 2. Please note that the semantics ensures that if V' is empty,
then (V,IC,u)p I+ ~ for any ~. The formula (Ov) is satisfied only if all v €
V satisfy . For non-empty V, the formula (p; < p3) is satisfied if the term
denoted by p; is less than py. The formula (/) is satisfied by (V, K, ) and p
if (|v]y,KC, py) and p satisfy . The formula (& D &2) is satisfied by a semantic
model if either &; is not satisfied by the model or & is satisfied by the model.

2 We do not have formulas such as O(Cy).
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Table 2. Semantics of EPPL

Denotation of probability terms

[T0v 0 =r

vy« ) = p(y)

[[ f’y (VK 1) :/’[’(l’ﬂv)

[ + P21y k) = [Py + [P2D v )
[PlpZ]]fv,;c,M) = 1]]’()V,}C,u) X [p2 ’()V,}C,u)
[[?]]fV,C ) = max(0, min(r, 1))

Satisfaction of probabilistic formulas
(V, K, w)p IF (O7) iff viFc v for every v € V
VK, m)p Ik (pr < p2) iff V # 0 implies ([p1]{y,c .y < [P2l{v i )

( )

V,K,wpl-(€/v) (v, K py)p - €

(V,IC, w)p IF fEf itV =0

(VK w)p Ik (&2 &2) iff (VK w)p IF &2 or (V. K, u)p I &1

Entailment is defined as usual: = entails £ (written = E &) if (V,K,u)p IF £
whenever (V,IC, u)p I+ & for each & € =.

Please note that the K-assignment p is sufficient to interpret a useful sub-
language of probabilistic state formulas:

k:i=(a<a)[fff] (kDK)
a:=z[r](a+a)] (aa)[ 7.

Henceforth, the terms of this sub-language will be called analytical terms and
the formulas will be called analytical formulas.

2.3 The Axiomatization

We need three new concepts for the axiomatization, one of valid state formula, a
second one of probabilistic tautology and the third of valid analytical formulas.

A classical state formula ~y is said to be valid if it is true of all valuations
v € V. As a consequence of the finiteness of D, the set of valid classical state
formulas is recursive.

Consider propositional formulas built from a countable set of propositional
symbols @ using the classical connectives | and —. A probabilistic formula &
is said to be a probabilistic tautology if there is a propositional tautology ( over
Q and a map o from Q to the set of probabilistic state formulas such that &
coincides with (,0 where 3,0 is the probabilistic formula obtained from 3 by
replacing all occurrences of L by fff, — by D and ¢ € Q by o(g). For instance,
the probabilistic formula ((y1 < y2) D (y1 < y2)) is tautological (obtained, for
example, from the propositional tautology ¢ — q).

As noted in Section 2.2, if Iy is the real closed field in a generalized prob-
abilistic structure, then a Ky-assignment is enough to interpret all analytical
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formulas. We say that k is a valid analytical formula if for any real closed field I
and any K-assignment p, k is true for p. Clearly, a valid analytical formula holds
for all semantic structures of EPPL. It is a well-known fact from the theory of
quantifier elimination [12,3] that the set of valid analytical formulas so defined
is decidable. We shall not go into details of this result as we want to focus on
reasoning about probabilistic aspects only.

The axioms and inference rules of EPPL are listed in Table 3 and better
understood in the following groups.

Table 3. Axioms for EPPL

Axioms
[CTaut] F (Ov) for each valid state formula ~
[PTaut] - & for each probabilistic tautology &
[Lift=] F ((O(y1 =172)) D (O D> 0O72))
[Eqvff] F ((Off) = fff)
[RefA]  F (((By1) N (O72)) O (O(y1 Av2)))
[RCF] + x{y/p|} where & is a valid analytical formula, y and p are sequences
of probability variables and probability terms respectively

[Meas0] F (([ff) = 0)

FAAA] - ((([0n £92)) =005 ((flon ¥ 2) = (/1) + ()
[Mon] = ((O(11 =72)) 2 ((Jn) < (/7))

Dist] (615 62)/7) = (E1/y ) (€&/7))

[Blim1] F ((Oy)/72) ~ (O(2 = 1)) |

[Elim2] + (((pr < p2)/7) = ((07) D (1 < p2)[(f 7))

Inference rules
[PMP] &1, (&1 D &2) &2
[Cond] + (¢/7) whenever F ¢

The axiom CTaut says that if -y is a valid classical state formula then (Ov)
is an axiom. The axiom PTaut says that a probabilistic tautology is an axiom.
Since the set of valid classical state formulas and the set of probabilistic tautolo-
gies are both recursive, there is no need to spell out the details of tautological
reasoning.

The axioms Lift=-, Eqvff and RefA are sufficient to relate (local) classical
state reasoning and (global) probabilistic tautological reasoning.

The term k{y/p| in the axiom RCF is the term obtained by substituting all
occurrences of y; in k by p;. The axiom RCF says that if x is a valid analyti-
cal formula, then any formula obtained by replacing variables with probability
terms is a tautology. We refrain from spelling out the details as the set of valid
analytical formulas is recursive.

The axiom Meas() says that the measure of empty set is 0. The axiom FAdd
is the finite additivity of the measures. The axiom Mon relates the classical
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connectives with probability measures and is a consequence of monotonicity of
measures.

The axiom DistD says that the connective D distributes over the conditional
construct. The axioms Elim1 and Elim2 eliminate the conditional construct.

The probabilistic term (p; < p2)|g'§(111)m)) in Elim2 is the term obtained by

replacing all occurrences of ([v1) by ([(71 A 7)) for each classical state formula
Y1-

The inference rule PMP is the modus ponens for classical and probabilistic
implication. The inference rule Cond says that if £ is an theorem. then so is
(&/7). The inference rule Cond is similar to the generalization rule in modal
logics.

As usual we say that a set of formulas I" derives £, written I' F £, if we can
build a derivation of £ from axioms and the inference rules using formulas in I”
as hypothesis. Please note that while applying the rule Cond, we are allowed to
use only theorems of the logic (and not any hypothesis or any intermediate step
in the derivation).

Every probabilistic formula £ is equivalent to a probabilistic formula 7 in
which there is no occurrence of a conditional construct:

Lemma 1. Let £ be an EPPL formula. Then, there is a conditional-free formula
1 such that - £ = . Moreover, there is an algorithm to compute 7.

Furthermore, the above set of axioms and rules form a recursive axiomatization:

Theorem 1. EPPL is sound and weakly complete. Moreover, the set of theo-
rems is recursive.

3 Basic Probabilistic Sequential Programs
We shall now describe briefly the syntax and semantics of our basic programs.

3.1 Syntax

Assuming the syntax of EPPL, the syntax of the programming language in the
BNF notation is as follows (with the proviso r € R ):

— s:=skip | xm <t [ bm «— [ toss(bm, ) [ s; s [| bm—If 7y then s else s.

The statements xm <t and bm « ~ are assignments to memory cells xm and
bm respectively. For the rest of the paper, by an expression we shall mean either
the terms ¢ or the classical state formulas v. Please note that ¢ and v may contain
rigid variables (which may be thought of as input to a program).

The statement toss(bm,r) sets bm true with probability 7. The command
s; s is sequential composition. The statement bm—If + then s; else s5 is the bm—
marked alternative choice: if v is true then s; is executed and bm is set to true
after the execution of s; else s5 is executed and bm is set to false.
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3.2 Semantics

The semantics of the programming language is basically the forward semantics
in [17] adapted to our programming language. Given G, the set of generalized
probabilistic states, the denotation of a program s is a map [s] : G — G defined
inductively in Table 4. The definition uses the following notations:

— The denotation of a real term ¢ given a valuation v can be extended to
classical state formulas as: [v], = tt if v k¢ v otherwise [v], = ff.

— If m is a memory cell (xm or bm) and e is an expression of the same type (¢ or
7, respectively) then the map 67" : YV — V is defined as 6" (v) = Ve, Where
Uley, assigns the value [e], to the cell m and coincides with v elsewhere. As

usual, (6™)71 : pV — pV is defined by taking each set U C V to the set of
its pre-images.

= Vi, K ) + (Va, K o) = (Vi U V2, K, i + o).

—r(V.K,p) = (V. K, rp).

The denotation of classical assignments, sequential composition and marked al-
ternative are as expected. The probabilistic toss toss(bm, r,) assigns bm the value
tt with probability ¥ and the value ff with probability 1 — 7. Therefore, the de-
notation of the probabilistic toss is the “weighted” sum of the two assignments
bm «— tt and bm « ff.

Table 4. Denotation of programs

[skip] =AMV, K, ). (V, K, 1)
[xm ] = AV, K, p). (5 (V), K, o (™))
[bm 7] =AMV, K, ). (5™ (V), K, o (85M)7H)
[toss(bm, )] =AMV, K, p). (1 =7) ([bm — IV, K, )+
7 ([bm —tt](V, K, 1))
[s1; 52] = AV, K, ). [s2] ([s1] (V. K, )
[bm—If v then s1 else s2] = A(V, K, ). ([s1; bm — tt] (|7]y-, K, gy )+

[s2;bm —fI(I(= )y, K, =)

4 Probabilistic Hoare Logic

We are ready to define the Hoare logic. As expected, the Hoare assertions are :

— 0= {&s{¢}

Satisfaction of Hoare assertions is defined as

= (Vi wp lep 3 (V. p)p IF &,
= (V,K,w)pln {&} s {&} if (V. K, p)p Ik & implies [s[(V,KC, u)p IF &2

Semantic entailment is defined as expected: we say that A entails ¢ (written
AE§)if (V,K, p)p - 6 whenever (V,IC, u)p IF 8o for each 6y € A.
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4.1 Calculus

A sound Hoare calculus for our probabilistic sequential programs is given in Ta-
ble 5. In the axioms ASGR and ASGB, the notation ¢ means the formula
obtained from ¢ by replacing all occurrences (including those in conditionals
and probability terms) of the memory variable m by the expression e. The ax-
ioms TAUT, SKIP, ASGR and ASGB are similar to the ones in the case of
sequential programs.

Table 5. Hoare calculus

Axioms
[TAUT] + ¢ if £ is an EPPL theorem
[SKIP] + {¢} skip {¢}
[ASGR] F {&™}xm —t {&}
ASGE] +{&") bm —1 (¢}
[

|U’Y)

TOSS] + {n|2” (L) () 47 ™) }toss(bm,r) {n}

O™ AvEm)

Inference rules
SEQ] {o}si{&},{&}s2{} F{}si;s2{}
[IF] {60} s1;bm —tt {&2}
{&1} s2;bm —fF{&3} F {&o Y &1} bm—If 7 then s; else s2{&2 Ybm &3}
[CONS] & D &1, {&1}s{},62 D8 F{&i}s{&)
[OR]  {&o}s{&},{&}s{&}) F{&U&i}s{é})
[AND] {&o}s{&i}, {6} s{&} F{&}s{&né}

For the axiom TOSS, we do not consider arbitrary probabilistic formulas.
Instead, we just have probabilistic formulas 1 which do not have any conditional
sub-terms. This is not a serious limitation as every EPPL formula is equivalent

to another EPPL formula without conditionals (see Lemma 1). Furthermore,
()]

O(ygmAve™) |({—F)(J"¥ )+

replacing every occurrence of a necessity formula (DW) by (D(Vfr 7 ™)) and

every occurrence of a probability term ( [+) by (1 f Y™ )+ f 7a™). Here, the

formula 5™ is obtained by replacing all occurrences of bm by e. The soundness

of this Hoare rule is a consequence of the following lemma:

the formula n\ i) is the formula obtained from n by

Lemma 2 (Substitution lemma for probabilistic tosses). For any formula
. g
1, ([toss(bm, )] (VS K, ) p = iff (V. IC, w)p I \D?ﬁmmgm)IE{j);)(MmW(Mm).

The inference rules SEQ, CONS, OR and AND are similar to the ones in
sequential programs. For the inference rule IF, £ Y ¢’ is an abbreviation for the
formula ((§/v) N (&'/—7)). It follows from the definition of semantics of EPPL
that (V,IC, u)p IF £ ¢ if and only if (|v|y,, K, py)p I & and (| =7y, K, piy)p IF
&'. We have:
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Theorem 2. The Hoare calculus is sound.

The completeness for the Hoare logic was being worked upon in collaboration
with Luis Cruz-Filipe at the time of submission of this paper. The Hoare rule
for probabilistic tosses is its weakest pre-condition form as a consequence of
the substitution lemma for probabilistic tosses (see Lemma 2 above). For the
alternative, we have shown that if £, and & are weakest pre-conditions corre-
sponding to the two marked choices then so is g Y &1. Furthermore, any EPPL
formula ¢ is essentially equivalent to a disjunct of formulas of the kind & v, £”.
Roughly, two EPPL formulas are essentially equivalent if the semantic structures
satisfying them differ only in the C-assignment part.

5 Example

We illustrate our Hoare calculus on a variation of the quantum one-time pad. A
qubit is the basic memory unit in quantum computation (just as a bit is the basic
memory unit in classical computation). The state of a qubit is a pair («, 3) of
complex numbers such that |o|?+|3]? = 1. A quantum one-time pad [2] encrypts
a qubit using two key (classical) bits in a secure way: observing the encrypted
qubit yields two results, both with equal probability. In the special case that «
and [ are real numbers one bit key bmy suffices. We restrict our attention to
this special case. If the key bmy = 1 then the qubit is (unitarily) encrypted as
the pair (3, —a) otherwise it remains the same. The following program Sqenc
simulates this process by first generating a random key and then encrypting the
qubit (xmq,xms): toss(bmy, 2) bm-If bm;, then Paulixz else skip, where Paulix
is XMg <= XM1; XM1 <= XMg; XMy <— —XMg3 3.

Assume that the initial values of xm; and xm2 are ¢; and cq respectively (with
c1 # ¢2). It follows from quantum information theory that in order to prove the
security of the quantum one-time pad, it suffices to show that the probability
after the encryption of xm; being c; is é (and hence of xm; being ¢y is also
%) We can use our logic to show the above for Sqenc- In particular, assum-
ing 7 is O((xmy = ¢1) A (xmg = ¢2) A (1 < ¢2)), we derive the following in
our Hoare calculus: - {(([tt) = 1) Nnr} Sqenc {(f(xm1 = c1)) = 3 }. Abbreviat-
ing the statement bm—If bmy then Paulixz else skip as IF, the derivation is:

L{(J(xm1 =c1)) = L }skip{(J(xm1 = 1)) = 1} SKIP
2 {(f(c2 = c1)) = 0} Paulixz {(f(xm1 = ¢1)) = 0} ASGR, SEQ
3(((Jty=2Nnn) D (Jxmi=c1)) =1 TAUT
1 = D) > s =) =0 TAUT
5{(((Jtt) = 3) Nnr) Yom, (Jtt) = 3) Nmr) HIF

{(J(xm1 = 1)) = me(f(xml =c1)) =0} IF, CONS 1-4

6 ((J(xmi =c1)) = 3 Yom(f(xm1 = c1)) =0) D (f(xm1 = 1)) = 5 TAUT

3 The name Paulixz has its roots in quantum mechanics.
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(nr N ((Jbm) = 2)N((f—bm) = ;))D
(((Jtt) = 2) N nr) Yom, (((Stt) = 2) Nnr) TAUT
{tr n ((fbm) = J) N ((J=bm) = )} IF{([(xm:1 = cl)) =1} CONS 56,7

{(([tv) :1)ﬂn1}{toss(b 3}
(A ((fbm) = 1) A ((f=bm) = 1))}  TOSS, TAUT

10 {((ftt) = 1) Nnr} Sqenc {(f(xm1 = c1)) = 3} SEQ 8.9.

6 Related Work

The area of formal methods in probabilistic programs has attracted a lot of work
ranging from semantics [16, 15,29, 22] to logic-based reasoning [9,17,27,10,13,
21,23, 6].

Our work is in the field of probabilistic dynamic logics. Dynamic logic is a
modal logic in which the modalities are of the form (s)¢ where s is a program
and ¢ is a state assertion formula. For probabilistic programs, there are two
distinct approaches to dynamic logic. The main difference in the two approaches
is that one uses truth-functional state logic while the other one uses state logic
with arithmetical connectives.

The first truth-functional probabilistic state logic based works appear in the
context of dynamic logic [28,18,26,9,8]. In the context of probabilistic truth-
functional dynamic logics, the state language has terms representing probabilities
( e.g., ([~y) represents the probability of v being true). An infinitary complete
axiom system for probabilistic dynamic logic is given in [18]. Later, a complete
finitary axiomatization of probabilistic dynamic logic was given in [9]. However,
the state logic is second-order (to deal with iteration) and no axiomatization of
the state logic is achieved. In [8], decidability of a less expressive dynamic logic
is achieved.

Hoare logic can be viewed as a fragment of dynamic logic and the first proba-
bilistic Hoare logic with truth-functional propositional state logic appears in [27].
However, as discussed in Section 1, even simple assertions in this logic may not
be provable. For instance, the valid Hoare assertion (adapting somewhat the
syntax) {([tt) = 1} If 2 = 0 then skip else skip {( [tt) = 1} is not provable in the
logic. As noted in [27,17], the reason for incompleteness is the Hoare rule for the
alternative if-then-else which tries to combine absolute information of the two
alternatives truth-functionally. The Hoare logic in [6] circumvents the problem
of the alternative by defining the probabilistic sum connective as already dis-
cussed in Section 1. Although this logic is more expressive than the one in [27]
and completeness is achieved for a fragment of the Hoare logic, it is not clear
how to axiomatize the probabilistic sum connective [6].

The other approach to dynamic logic uses arithmetical state logic instead of
truth-functional state logic [17,15,14,21]. For example, instead of the if-then-else
construct the programming language in [17] has the construct v7s; + (—7)?s2
which is closely bound to the forward denotational semantics proposed in [16].
This leads to a probabilistic dynamic logic in which measurable functions are used
as state formulas and the connectives are interpreted as arithmetical operations.
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In the context of Hoare logics, the approach of arithmetical connectives is the
one that has attracted more research. The Hoare triple in this context naturally
leads to the definition of weakest pre-condition for a measurable function g and
a program s: the weakest pre-condition wp(g,s) is the function that has the
greatest expected value amongst all functions f such that {f}s{g} is a valid
Hoare triple. The weakest pre-condition can thus be thought of as a backward
semantics which transforms a post-state g in the context of a program s to a
pre-state wp(g, s). The important result in this area is the duality between the
forward semantics and the backwards semantics [14].

Later, [21] extended this framework to address non-determinism and proved
the duality between forward semantics and backward semantics. Instead of just
using functions f and g as pre-conditions and post-conditions, [21] also allows
a rudimentary state language with basic classical state formulas «, negation,
disjunction and conjunction. The classical state formula « is interpreted as the
function that takes the value 1 in the memory valuations where « is true and 0
otherwise. Conjunction and disjunction are interpreted as minimum and maxi-
mum respectively, and negation as subtraction from the constant function 1. For
example, the following Hoare assertion is valid in this logic: {r} toss(bm,r) {bm}.
Here r in the pre-condition is the constant function r and bm is the function
that take value 1 when bm is true and 0 otherwise. The validity of the above
Hoare assertion says that the probability of bm being true after the probabilistic
toss is at least r.

We tackle the problem of alternative if-then-else by marking the choices at
the end of the execution and by introducing the conditional construct (£/) in
the state logic. The state logic itself is the probabilistic logic in [20] extended
with the conditional construct. The logic is designed by the exogenous semantics
approach to probabilistic logics [24,25,7,1,20]. The main difference from the
logic in [20] is that the state logic herein has the conditional construct which
is not present in [20]. The axioms DistD, Elim1 and Elim2 are used to deal
with this conditional construct. Using these, we can demonstrate that every
formula is equivalent to another formula without conditionals and the proof of
completeness then follows the lines of the proof in [20]. The other difference
is that the probabilities in [20] are taken in the set of real numbers and terms
contain real computable numbers. The proof of completeness is obtained relative
to an (undecidable) oracle for reasoning about reals.

Finally, one main contribution of our paper is the Hoare rule in the weak-
est pre-condition form for probabilistic toss in the context of truth-functional
state logic. The Hoare rule for probabilistic tosses does appear in the context of
arithmetical Hoare logics and takes the form

wp(toss(bm, ), a) = r x wp(bm «—tt,a) + (1 — ) x wp(bm — ff, a).

7 Conclusions and Future Work

Our main contribution is a sound probabilistic Hoare calculus with a truth-
functional state assertion logic that enjoys recursive axiomatization. The Hoare
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rule for the if-then-else statement avoids the probabilistic sum construct in [6] by
marking the choices taken and by taking advantage of a conditional construct
in the state assertion language. Another important contribution is the axiom
for probabilistic toss which gives the weakest pre-condition in truth-functional
setting and is the counterpart of the weakest pre-condition for probabilistic toss
in Hoare logics with arithmetical state logics.

As discussed in Section 4, we are currently working towards complete ax-
iomatization for the Hoare-calculus for the iteration free language. We plan to
include the iteration construct and demonic non-determinsim in future work.
For iteration, we will investigate completeness using an oracle for arithmetical
reasoning.

Our long-term interests are in reasoning about quantum programs and pro-
tocols. Probabilities are inevitable in quantum programs because measurements
of quantum states yield probabilistic mixtures of quantum states. We aim to in-
vestigate Hoare-style reasoning and dynamic logics for quantum programming.
Towards this end, we have already designed logics for reasoning about individ-
ual quantum states [19,5] and a sound Hoare logic for basic quantum imperative
programs [4].
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Abstract. We study infinite stochastic games played by two-players
over a finite state space, with objectives specified by sets of infinite traces.
The games are concurrent (players make moves simultaneously and in-
dependently), stochastic (the next state is determined by a probability
distribution that depends on the current state and chosen moves of the
players) and infinite (proceeds for infinite number of rounds). The anal-
ysis of concurrent stochastic games can be classified into: quantitative
analysis, analyzing the optimum value of the game; and qualitative anal-
ysis, analyzing the set of states with optimum value 1. We consider con-
current games with tail objectives, i.e., objectives that are independent
of the finite-prefix of traces, and show that the class of tail objectives are
strictly richer than the w-regular objectives. We develop new proof tech-
niques to extend several properties of concurrent games with w-regular
objectives to concurrent games with tail objectives. We prove the posi-
tive limit-one property for tail objectives, that states for all concurrent
games if the optimum value for a player is positive for a tail objective
@ at some state, then there is a state where the optimum value is 1 for
@, for the player. We also show that the optimum values of zero-sum
(strictly conflicting objectives) games with tail objectives can be related
to equilibrium values of nonzero-sum (not strictly conflicting objectives)
games with simpler reachability objectives. A consequence of our analy-
sis presents a polynomial time reduction of the quantitative analysis of
tail objectives to the qualitative analysis for the sub-class of one-player
stochastic games (Markov decision processes).

1 Introduction

Stochastic games. Non-cooperative games provide a natural framework to
model interactions between agents [13,14]. A wide class of games progress over
time and in stateful manner, and the current game depends on the history of in-
teractions. Infinite stochastic games [15,9] are a natural model for such dynamic
games. A stochastic game is played over a finite state space and is played in
rounds. In concurrent games, in each round, each player chooses an action from
a finite set of available actions, simultaneously and independently of the other
player. The game proceeds to a new state according to a probabilistic transi-
tion relation (stochastic transition matrix) based on the current state and the
joint actions of the players. Concurrent games (also known as Blackwell games)
subsume the simpler class of turn-based games, where at every state at most
one player can choose between multiple actions; and Markov decision processes

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 256-270, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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(MDPs), where only one player can choose between multiple actions at every
state. Concurrent games also provide the framework to model synchronous re-
active systems [6]. In verification and control of finite state reactive systems
such games proceed for infinite rounds, generating an infinite sequence of states,
called the outcome of the game. The players receive a payoff based on a payoff
function that maps every outcome to a real number.

Objectives. Payoffs are generally Borel measurable functions [12]. For example,
the payoff set for each player is a Borel set B; in the Cantor topology on S¥
(where S is the set of states), and player i gets payoff 1 if the outcome of the
game is a member of B;, and 0 otherwise. In verification, payoff functions are
usually index sets of w-reqular languages. The w-regular languages generalize
the classical regular languages to infinite strings, they occur in low levels of the
Borel hierarchy (they are in 39 N II9), and they form a robust and expressive
language for determining payoffs for commonly used specifications. The simplest
w-regular objectives correspond to safety (“closed sets”) and reachability (“open
sets”) objectives.

Zero-sum games, determinacy and nonzero-sum games. Games may be
zero-sum, where two players have directly conflicting objectives and the payoff
of one player is one minus the payoff of the other, or nonzero-sum, where each
player has a prescribed payoff function based on the outcome of the game. The
fundamental question for games is the existence of equilibrium values. For zero-
sum games, this involves showing a determinacy theorem that states that the
expected optimum value obtained by player 1 is exactly one minus the expected
optimum value obtained by player 2. For one-step zero-sum games, this is von
Neumann’s minmax theorem [18]. For infinite games, the existence of such equi-
libria is not obvious, in fact, by using the axiom of choice, one can construct
games for which determinacy does not hold. However, a remarkable result by
Martin [12] shows that all stochastic zero-sum games with Borel payoffs are
determined. For nonzero-sum games, the fundamental equilibrium concept is a
Nash equilibrium [10], that is, a strategy profile such that no player can gain
by deviating from the profile, assuming the other player continue playing the
strategy in the profile.

Qualitative and quantitative analysis. The analysis of zero-sum concur-
rent games can be broadly classified into: (a) quantitative analysis that involves
analysis of the optimum values of the games; and (b) qualitative analysis that
involves simpler analysis of the set of states where the optimum value is 1.

Properties of concurrent games. The result of Martin [12] established the
determinacy of zero-sum concurrent games for all Borel objectives. The determi-
nacy result sets forth the problem of study and closer understanding of properties
and behaviors of concurrent games with different class of objectives. Several in-
teresting questions related to concurrent games are: (1) characterizing certain
zero-one laws for concurrent games; (2) relationship of qualitative and quanti-
tative analysis; (3) relationship of zero-sum and nonzero-sum games. The re-
sults of [6,7,1] exhibited several interesting properties for concurrent games with
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w-regular objectives specified as parity objectives. The result of [6] showed the
positive limit-one property, that states if there is a state with positive optimum
value, then there is a state with optimum value 1, for concurrent games with
parity objectives. The positive limit-one property has been a key property to
develop algorithms and improved complexity bound for quantitative analysis of
concurrent games with parity objectives [1]. The above properties can possibly be
the basic ingredients for the computational complexity analysis of quantitative
analysis of concurrent games.

Outline of results. In this work, we consider tail objectives, the objectives
that do not depend on any finite-prefix of the traces. Tail objectives subsume
canonical w-regular objectives such as parity objectives and Miiller objectives,
and we show that there exist tail objectives that cannot be expressed as w-regular
objectives. Hence tail objectives are a strictly richer class of objectives than
w-regular objectives. Our results characterize several properties of concurrent
games with tail objectives. The results are as follows.

1. We show the positive limit-one property for concurrent games with tail ob-
jectives. Our result thus extends the result of [6] from parity objectives to
a richer class of objective that lie in the higher levels of Borel hierarchy.
The result of [6] follows from a complementation argument of quantitative
p-calculus formula. Our proof technique is completely different: it uses cer-
tain strategy construction procedures and a convergence result from measure
theory (Lévy’s zero-one law). It may be noted that the positive limit-one
property for concurrent games with Miiller objectives follows from the pos-
itive limit-one property for parity objectives and the reduction of Miiller
objectives to parity objectives [17]. Since Miiller objectives are tail objec-
tives, our result presents a direct proof for the positive limit-one property
for concurrent games with Miiller objectives.

2. We relate the optimum values of zero-sum games with tail objectives with
Nash-equilibrium values of non-zero sum games with reachability objectives.
This establishes a relationship between the values of concurrent games with
complex tail objectives and Nash equilibrium of nonzero-sum games with
simpler objectives. From the above analysis we obtain a polynomial time
reduction of quantitative analysis of tail objectives to qualitative analysis
for the special case of MDPs. The above result was previously known for the
sub-class of w-regular objectives specified as Miiller objectives [4,5,2]. The
proof techniques of [4,5,2] use different analysis of the structure of MDPs
and is completely different from our proof techniques.

2 Definitions

Notation. For a countable set A, a probability distribution on A is a func-
tion 6 : A — [0,1] such that - ., 6(a) = 1. We denote the set of probabil-
ity distributions on A by D(A). Given a distribution 6 € D(A), we denote by
Supp(6) = {z € A | 6(x) > 0} the support of é.
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Definition 1 (Concurrent Games). A (two-player) concurrent game struc-
ture G = (S, Moves, Mvy, Mg, 6) consists of the following components:

— A finite state space S and a finite set Moves of mowves.

— Two move assignments Mvy, Mvy: S — 2Meves\(). Fori € {1,2}, assignment
Muv; associates with each state s € S the non-empty set Mv;(s) C Moves of
moves available to player i at s.

— A probabilistic transition function 6 : S x Moves x Moves — D(S), that
gives the probability 6(s,a1,a2)(t) of a transition from s to t when player 1
plays move a1 and player 2 plays move ag, for all s,t € S and a1 € Mv1(s),
as € MUQ(S).

An important special class of concurrent games are Markov decision processes
(MDPs), where at every state s we have |Mva(s)| = 1, i.e., the set of available
moves for player 2 is singleton at every state.

At every state s € S, player 1 chooses a move a; € Mv;(s), and simultaneously
and independently player 2 chooses a move as € Mvs(s). The game then proceeds
to the successor state ¢ with probability (s, a1,a2)(t), for all t € S. A state s
is called an absorbing state if for all a; € Mvi(s) and az € Mwvy(s) we have
6(s,a1,a2)(s) = 1. In other words, at s for all choices of moves of the players the
next state is always s. We assume that the players act non-cooperatively, i.e., each
player chooses her strategy independently and secretly from the other player, and
is only interested in maximizing her own reward. For all states s € S and moves
a1 € Mvq(s) and ag € Mvs(s), we indicate by Dest(s, a1, az2) = Supp(é(s, a1, az))
the set of possible successors of s when moves a1, as are selected.

A path or a play w of G is an infinite sequence w = (sg, $1, S2, .. .) of states in
S such that for all k > 0, there are moves af € Mvy(sy) and a§ € Mva(sy) with
8(sk,ak, ak)(sk41) > 0. We denote by (2 the set of all paths and by (2, the set
of all paths w = (s, $1, S2,...) such that sy = s, i.e., the set of plays starting
from state s.

Strategies. A selector € for player i € { 1,2} is a function £ : S — D(Moves)
such that for all s € S and a € Mowes, if £(s)(a) > 0, then a € Muv;(s). We
denote by A; the set of all selectors for player i € {1,2}. A strategy for player 1
is a function 7 : ST — A; that associates with every finite non-empty sequence
of states, representing the history of the play so far, a selector. Similarly we
define strategies m for player 2. We denote by I and IT the set of all strategies
for player 1 and player 2, respectively.

Once the starting state s and the strategies 7 and 7 for the two players
have been chosen, the game is reduced to an ordinary stochastic process. Hence
the probabilities of events are uniquely defined, where an event A C (2 is
a measurable set of paths. For an event A C (25 we denote by Pr;™(A) the
probability that a path belongs to A when the game starts from s and the
players follow the strategies 7 and . For ¢ > 0, we also denote by @, : 2 — S
the random variable denoting the i-th state along a path.

Objectives. We specify objectives for the players by providing the set of win-
ning plays & C (2 for each player. Given an objective ¢ we denote by @ = 2\ &,
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the complementary objective of @. A concurrent game with objective ¢, for
player 1 and @, for player 2 is zero-sum if &3 = &®1. A general class of ob-
jectives are the Borel objectives [11]. A Borel objective & C S“ is a Borel
set in the Cantor topology on S“. In this paper we consider w-regular objec-
tives [17], which lie in the first 21/3 levels of the Borel hierarchy (i.e., in the
intersection of X9 and I19) and tail objectives which is a strict superset of w-
regular objectives. The w-regular objectives, and subclasses thereof, and tail
objectives are defined below. For a play w = (s, s1,$2,...) € {2, we define
Inf(w) = { s € S| sy = s for infinitely many k& > 0 } to be the set of states that
occur infinitely often in w.

— Reachability and safety objectives. Given a set T C S of “target” states,
the reachability objective requires that some state of T" be visited. The set
of winning plays is thus Reach(T) = {w = (so,81,82,...) € 2 | s €
T for some k > 0 }. Given a set F C S, the safety objective requires that
only states of F' be visited. Thus, the set of winning plays is Safe(F) = {w =
(80,51,82,...) € 2] s € Fforall k>0}.

— Biichi and coBiichi objectives. Given a set B C S of “Biichi” states, the
Biichi objective requires that B is visited infinitely often. Formally, the set
of winning plays is Biichi(B) = {w € 2| Inf(w)NB # 0 }. Given C C S,
the coBiichi objective requires that all states visited infinitely often are in C.
Formally, the set of winning plays is coBiichi(C) = {w € 2| Inf(w) C C}.

— Parity objectives. For ¢,d € N, we let [c..d] = {c,e+1,...,d}. Let p :
S — [0..d] be a function that assigns a priority p(s) to every state s € S,
where d € N. The Even parity objective is defined as Parity(p) = { w €
2 | min (p(Inf(w))) is even }, and the Odd parity objective as coParity(p) =
{w € 2| min (p(Inf(w))) is odd }.

— Muller objectives. Given a set M C 25 of subset of states, the Miiller objec-
tive is defined as Miiller(M) = { w € 2 | Inf(w) € M }.

— Tail objectives. Informally the class of tail objectives is the sub-class of Borel
objectives that are independent of all finite prefixes. An objective @ is a tail
objective, if the following condition hold: a path w € @ if and only if for
all i > 0, w; € @, where w; denotes the path w with the prefix of length 4
deleted. Formally, let G, = 0(60;,0;41,...) be the o-field generated by the
random variables ©;, 041, . ... The tail o-field 7 is defined as T = (1,5 Gi-
An objective @ is a tail objective if and only if @ belongs to the tail o-field
T, i.e., the tail objectives are indicator functions of events A € 7.

The Miiller and parity objectives are canonical forms to represent w-regular
objectives [16]. Observe that Miiller and parity objectives are tail objectives.
Note that for a priority function p : S — { 0,1}, an even parity objective
Parity(p) is equivalent to the Biichi objective Biichi(p~1(0)), i.e., the Biichi set
consists of the states with priority 0. Biichi and coBiichi objectives are special
cases of parity objectives and hence tail objectives. Reachability objectives are
not necessarily tail objectives, but for a set T' C S of states, if every state s € T
is an absorbing state, then the objective Reach(T") is equivalent to Biichi(7") and
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hence is a tail objective. It may be noted that since o-fields are closed under
complementation, the class of tail objectives are closed under complementation.
We give an example to show that the class of tail objectives are richer than
w-regular objectives.!

Example 1. Let r be a reward function that maps every state s to a real-valued
reward r(s), i.e.,, r : § — R. For a constant ¢ € R consider the objective &,
defined as follows: &, = {w € 2 |w = (s1, 82,53, ...), iminfp, oo L S0 7(si) >
c}. Intuitively, @, accepts the set of paths such that the “long-run” average of the
rewards in the path is at least the constant c. The “long-run” average condition
lie in the third-level of the Borel-hierarchy (i.e., in II3 and ITI3-complete) and
cannot be expressed as an w-regular objective. It may be noted that the “long-
run” average of a path is independent of all finite-prefixes of the path. Formally,
the class @, of objectives are tail objectives. Since @, are II3-complete objectives,
it follows that tail objectives lie in higher levels of Borel hierarchy than w-regular
objectives.

Values. The probability that a path satisfies an objective @ starting from state
s € S, given strategies 7,7 for the players is Pry’™(®). Given a state s € S and
an objective @, we are interested in the maximal probability with which player 1
can ensure that @ and player 2 can ensure that ¢ holds from s. We call such prob-
ability the value of the game G at s for player i € {1,2}. The value for player 1
and player 2 are given by the functions (1)), (®) : S — [0,1] and (2))ya(P) :
S — [0,1], defined for all s € S by (1)vai(®)(s) = sup,epinfreg Pry"(P)
and ((2))vai(?)(s) = sup,epinfrer Pry™(@). Note that the objectives of the
player are complementary and hence we have a zero-sum game. Concurrent
games satisfy a quantitative version of determinacy [12], stating that for all
Borel objectives @ and all s € S, we have {(1)ya(P)(s) + {(2)vat(P)(s) = 1.
A strategy 7 for player 1 is optimal for objective @ if for all s € S we have
infrem Pri™ (@) = (1) pai(P)(s). For € > 0, a strategy 7 for player 1 is e-optimal
for objective @ if for all s € S we have infrcg Pri™ () > (1) var(P)(s) — . We
define optimal and e-optimal strategies for player 2 symmetrically. For € > 0, an
objective @ for player 1 and @ for player 2, we denote by I'.(®) and I1.(P) the
set of e-optimal strategies for player 1 and player 2, respectively. Even in con-
current games with reachability objectives optimal strategies need not exist [6],
and e-optimal strategies, for all € > 0, is the best one can achieve. Note that the
quantitative determinacy of concurrent games is equivalent to the existence of
e-optimal strategies for objective @ for player 1 and @ for player 2, for all ¢ > 0,
at all states s € S, i.e., for alle > 0, [.(®) # 0 and II.(P) # 0.

We refer to the analysis of computing the limit-sure winning states (the set
of states s such that (1)),a(?)(s) = 1) as the qualitative analysis of objective
®. We refer to the analysis of computing the values as the quantitative analysis
of objective @.

1 Our example shows that there are IT3-complete objectives that are tail objectives.
It is possible that the tail objectives can express objectives in even higher levels of
Borel hierarchy than II3, which will make our results stronger.
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Fig. 1. A simple Markov chain

3 Positive Limit-One Property

The positive limit-one property for concurrent games, for a class C of objectives,
states that for all objectives @ € C, for all concurrent games G, if there is a state
s such that the value for player 1 is positive at s for objective @, then there is
a state s’ where the value for player 1 is 1 for objective @. The property means
if a player can win with positive value from some state, then from some state
she can win with value 1. The positive limit-one property was proved for parity
objectives in [6] and has been one of the key properties used in the algorithmic
analysis of concurrent games with parity objectives [1]. In this section we prove
the positive limit-one property for concurrent games with tail objectives, and
thereby extend the positive limit-one property from parity objectives to a richer
class of objectives that subsume several canonical w-regular objectives. Our proof
uses a result from measure theory and certain strategy constructions, whereas
the proof for the sub-class of parity objectives [6] followed from complementation
arguments of quantitative p-calculus formula. We first show an example that the
positive limit-one property is not true for all objectives, even for simpler class
of games.

Example 2. Consider the game shown in Fig 1, where at every state s, we have
Muv1(s) = Mva(s) = {1} (i.e., the set of moves is singleton at all states). From all
states the next state is sg and s; with equal probability. Consider the objective
(O(s1) which specifies the next state is s1; i.e., a play w starting from state s is
winning if the first state of the play is s and the second state (or the next state
from s) in the play is s1. Given the objective @ = (O(s1) for player 1, we have
{19 0a1(P)(50) = (1) var(®)(s1) = L/o. Hence though the value is positive at sq,
there is no state with value 1 for player 1.

Notation. In the setting of concurrent games the natural filtration sequence
(F») for the stochastic process under any pair of strategies is defined as

Fn=0(01,02,...,0,)
i.e., the o-field generated by the random-variables ©1,6s,,...,0,.

Lemma 1 (Lévy’s 0-1 law). Suppose H,, | Hoo, i.e.,Hy, is a sequence of
increasing o-fields and Hoo = 0(UpHy). For all events A € Hoo we have

E(14 | Hp) =Pr(A | Hy) — L almost-surely, (i.e., with probability 1),

where 1 4 is the indicator function of event A.
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The proof of the lemma is available in Durrett (page 262—263) [8]. An immediate
consequence of Lemma 1 in the setting of concurrent games is the following
lemma.

Lemma 2 (0-1 law in concurrent games). For all concurrent game struc-
tures G, for all events A € Foo = 0(UnFn), for all strategies (1,m) € I' x II, for
all states s € S, we have

Pri"(A| Fn) — 14 almost-surely.

Intuitively, the lemma means that the probability Prl’"(A | F,,) converges
almost-surely (i.e., with probability 1) to 0 or 1 (since indicator functions take
values in the range { 0,1 }). Note that the tail o-field 7 is a subset of Fo, i.e.,
T C Foo, and hence the result of Lemma 2 holds for all A € 7.

Notation. Given strategies 7 and 7 for player 1 and player 2, a tail objective
@, and a state s, for § > 0, let

HMP (1,7, 8) = { (51,82, 8n,Snt1,--.) | PrTT(P | (s1,82,...,80)) > 1=},

denote the set of paths w such that the probability of satisfying @ given the
strategies 7 and 7, and the prefix of length n of w is at least 1 — §; and

Hg’ﬁ(T,m@) ={ (81,82, 8n,8n+1,---) | Pro™ (D | (s1,82,...,8,)) < B}

denote the set of paths w such that the probability of satisfying & given the
strategies 7 and 7, and the prefix of length n of w is at most (.

Proposition 1. For all concurrent game structures G, for all strategies T and
m for player 1 and player 2, respectively, for all tail objectives @, for all states
s €S8, forall B3>0 and ¢ > 0, there exists n, such that Pr]™(HP (7,7, &) U
HYP (1,7, @) > 1 —¢.

Proof. Let us denote f, =Pr’™(® | F,). It follows from Lemma 2 that f, — @
almost-surely as n — oco. Since almost-sure convergence implies convergence in
probability [8], f,, — @ in probability. Formally, we have

V8 >0.Pri"(|fn —@| >B)—0 as n — 00.
Equivalently we have
VB > 0. Ve > 0. 3Ing. Vn > ng. Pr"(|fn —@| < B) > 1—c.

Thus we obtain that lim, ., Prl™(HYP (7,7, &) U HOP (7,7, ®)) = 1; and hence
the result follows.

Theorem 1 (Positive limit-one property). For all concurrent game struc-
tures G, for all tail objectives D, if there exists a state s € S such that (1)) yar(P)(s)
> 0, then there exists a state s' € S such that (1)) ye(P)(s") = 1.



264 K. Chatterjee

Proof. Assume towards contradiction that there exists a state s such that
(1N yar(®)(s) > 0, but for all states s’ we have (1), (P)(s’) < 1. Let a =
1= {1 pa(P)(s) = (2N var(P)(s). Since 0 < (1) ya(P)(s) < 1, we have 0 <
a < 1. Since {(2) a1 (P)(s") = 1 — {1)yai(P)(s’) and for all states s’ we have
(1N yar(P)(s) < 1, it follows that {(2)ve(P)(s") > 0, for all states s'. Fix n such
that 0 < 7 = minges{(2)) val(P)(s"). Also observe that since (2))yai(P)(s) = a <
1, we have n < 1. Let ¢ be a constant such that ¢ > 0, and «-(14+¢) = v < 1 (such
a constant exists as a < 1). Also let ¢; > 1 be a constant such that ¢; -y < 1
(such a constant exists since v < 1); hence we have 1 —¢; -y > 0 and 1 — Cll > 0.
Fix ¢ > 0 and 8 > 0 such that

0 < 2e < min{ n,?c-a,n~(l—cl~’y)}; 8 < min{ e, 1,1— 1 @)
4 4 2 C1
Fix e-optimal strategies 7. for player 1 and 7. for player 2. Let H!'# = HL.
(12,7, ®) and HOP = HOP(r.,m.,®). Consider n such that Prl=™(H}# U
HYP) >1— ¢ (such n exists by Proposition 1). Also observe that since 3 < }
we have H18 N HYA = (). Let

val = Pri=™ (& | HYP) - Prio™ (HyP) + Prio™ (@ | HYP) - Pr=™ (H)P).
We have
val < Prle™ (@) < val + Z (2)

The first inequality follows since H!# N H2# = () and the second inequality
follows since Pr[="™ (H}#UHYP) > 1—¢. Since 7. and 7. are e-optimal strategies
we have « — e < Pri="™* (@) < a + e. This along with (2) yield that

S

a—e—igvalch—e. (3)

Observe that Prle™(® | H}P) > 1 — 8 and Pr=™ (& | HOP) < B. Let ¢ =
Pr7=™ (H}P). Since Pri=™ (& | H}A) > 1 — 3; ignoring the term Prl="= (& |
HYPY . Prl=™ (H2P) in val and from the second inequality of (3) we obtain that
(1-pB)-gq<a+e Sincee<c-a,<1— ' andy=a-(1+c) we have

cy’

a+e a-(1+¢)

151 5 1—a- "7 W

We construct a strategy 7. as follows: the strategy 7. follows the strategy .
for the first n — l-stages; if a history in H!'? is generated it follows ., and
otherwise it ignores the history and switches to an e-optimal strategy. Formally,
for a history (s1, s2,...,s;) we have

me((s1,...,8k)) ik <mn;
or Pri=™= (P | (s1,82,...,8n)) > 1—0;

Te((Sny--.y8k)) Pri=™ (| (s1,82,...,80)) <1—p, and
k > n, where 7. is an e-optimal strategy

Te((S1,. .., 8K)) =
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Since 7. and 7. coincides for n— 1-stages we have Pr{="* (H1#) = Pr[=" (H1¥)
and Prl=™ (H2P) = Prl=™ (H?). Moreover, since @ is a tail objective that is
independent of the prefix of length n; 7 < minyecs{(2))va(®)(s’) and 7. is an
e-optimal strategy, we have Pr7=™ (& | H%%) > n — e. Also observe that

Pr=7e( | HYP) > (n—e) = Pri™=(& | H)P) + (n — e — Pri= (& | H))P))
> Pr{™ (@ | H)P) + (n—e = ),

since Pr7=™ (¢ | H%%) < 3. Hence we have the following inequality

Prie e (@) = Pri= (¢ | HYP) - Pl (HF)+ Pri= (@ | HP) - Pl (H))P)
— Pr]o™= (& | HLP) - Pr™ (H
) - Pr

yel
; A+ PR (@ | HYP) - Pr R (HE)
> P (@ | HYP) - P ()4 P (@ | HO) - P (HY9)

n

fmoeeB)(g-0) (s PR EY) 2 1-g- )
€
=val+(n—e—f)-1-q- )
5
>a— 4€+(n—5—ﬂ)-(1—q—i)(recallﬁrstinequalityof(3))
5e €
>a— +n=2) (1-q= ) (asf<eby(1))
5 n €
— 1—q— 2 7 1
> o 4+2( q 4) (as 2e < 3 by (1))
5 n n €
>a— +, (l-ay)— - (asg<eyby(4)
>a—5—i+45—§ (as2e < ] -(1—c1-7) by (1),
and n < 1)
>a+te.

The first equality follows since for histories in HYP the strategies 7. and 7.
coincide. Hence we have Pr;="¢(®) > a + ¢ and Pr;"™($) < 1 — a —e. This

S

is a contradiction to the fact that {(1)ye(?)(s) = 1 — « and 7¢ is an e-optimal
strategy. The desired result follows.

Notation. We use the following notation for the rest of the paper:
Wi ={s[(Da(@)(s) =1} Wy ={s]{2)wa(®)(s) =1}
W= {s [ {(Nwa(@)(s) >0} W5 ={s]|(2)va(®)(s) >0}

By determinacy of concurrent games with tail objectives, we have W}l = S\ W3 0
and W3 = S\ W%, We have the following finer characterization of the sets.

Corollary 1. For all concurrent game structures G, with tail objectives @ for
player 1, the following assertions hold:
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1. (a) if W70 £ 0, then Wi # 0; and (b) if W5° # 0, then W # 0.
2. (a) if W =S, then W} = S; and (b) if W5° = S, then W} = S.

Proof. The first result is a direct consequence of Theorem 1. The second result
is derived as follows: if W = S, then by determinacy we have Wy = (. If
W3 = 0, it follows from part 1 that W5 = ), and hence W} = S. The result
of part 2 shows that if a player has positive optimum value at every state, then
the optimum value is 1 at all states.

4 Zero-Sum Tail Games to Nonzero-Sum Reachability
Games

In this section we relate the values of zero-sum games with tail objectives with
the Nash equilibrium values of nonzero-sum games with reachability objectives.
The result shows that the values of a zero-sum game with complex objectives can
be related to equilibrium values of a nonzero-sum game with simpler objectives.
We also show that for MDPs the value function for a tail objective @ can be
computed by computing the maximal probability of reaching the set of states
with value 1. As an immediate consequence of the above analysis, we obtain
a polynomial time reduction of the quantitative analysis of MDPs with tail
objectives to the qualitative analysis. We first prove a limit-reachability property
of e-optimal strategies: the property states that for tail objectives, if the players
play c-optimal strategies, for small ¢ > 0, then the game reaches Wi U W3 with
high probability.

Theorem 2 (Limit-reachability). For all concurrent game structures G, for
all tail objectives @ for player 1, for all & > 0, there exists € > 0, such that for
all states s € S, for all e-optimal strategies 7. and w., we have

Pr7=™ (Reach(W} UW})) > 1 —¢.

Proof. By determinacy it follows that Wi UW,} = S\ (W UWS ). For a state
s € W UWs5 the result holds trivially. Consider a state s € W% U W3 % and
let v = {(2))var(@)(s). Observe that 0 < o < 1. Let n1 = min,cyy>0 (1)) var (P)(s)

and 7y = max,cyy>0(2)var(?)(s), and let n = min{ 71,1 — 72 }, and note that

0 <n <1 Given ¢ > 0, fix € such that 0 < 2¢ < min{ g,"l'gl }. Fix any
e-optimal strategies 7. and m. for player 1 and player 2, respectively. Fix
such that 0 < 3 < ¢ and 8 < ). Let H# = HA(r.,7.,0) and HOP =

HQP(r.,m.,®). Consider n such that Pr}=™ (H}PUHYP) = 1—¢ (such n exists

by Proposition 1), and also as § < ; we have H}»# N HYP = (). Let us denote
by

val = Pr}=™ (0 | HYP) - Prie™ (HYP) + Prj=™ (@ | HYP) - Pr=™ (HOP).
Similar to inequality (2) of Theorem 1 we obtain that

val < Prie™ (@) < val + i



Concurrent Games with Tail Objectives 267

Since 7. and 7. are e-optimal strategies, similar to inequality (3) of Theorem 1
we obtain that a —e — § <wal < a+e.

For W C S, let Reach"(W) = { (s1,82,83...) | 3k < n. s € W } de-
note the set of paths that reaches W in n-steps. We use the following nota-
tions: Reach(W!) = 2\ Reach™(W}), and Reach(W}) = 2\ Reach™(W3).
Consider a strategy 7. defined as follows: for histories in H}** N Reach(W3),
7. ignores the history after stage n and follows an e-optimal strategy 7; and
for all other histories it follows 7.. Let z; = Prl="™ (H}!® N Reach(W3)). Since
Ny = maXS€W2>o<<2>>WZ(¢)(s)7 and player 1 switches to an e-optimal strategy

for histories of length n in H!# N Reach(Wy) and @ is a tail objective, it fol-
lows that for all w = (s1,82,...,8n,Sni1,---) € HY? N Reach(W,)), we have
Pr?’”s (D] (s1,82...,8n)) < ma+e; where as Prio™ (D | (s1,82...,8,)) > 1—0.
Hence we have

valy = Pr7e ™ (@) < Prie™ () —z,-(1— f—1p—e) < val+i—z1-(l—ﬁ—n2—€),

since with probability z; the decrease is at least by 1 — 8 — 12 — €. Since 7 is
an c-optimal strategy we have vals > o — ¢; and since val < o + €, we have the
following inequality

3

z1~(1—n2—ﬁ—€)§25+4<3€
=721 < 3¢ (since n < 1 )
Z1 11 n= — 12
n—p—e
3 6 ! !
:>21<n_€2€< n€<z (sinceﬂ<5;s<z;6<n24€)

Consider a strategy 7. defined as follows: for histories in H%# N Reach(W),
T ignores the history after stage n and follows an e-optimal strategy m.; and
for all other histories it follows m.. Let 2o = Prl=™=(H# N Reach(W)). Since
m = minseW;o«Q))ml (P)(s), and player 2 switches to an e-optimal strategy for

histories of length n in H%# NReach(W}') and @ is a tail objective, it follows that
for all w = (s1,52,...,8n, Snt1,-..) € HY? N Reach(W}), we have Prl=™ (o |
(51,82...,8n)) > m —e; where as Pr;="= (@ | (s1,52...,5pn)) < (. Hence we have

valy = Prle™s (@) > Pri=™= (@) + 2o - (i — e — B) > val + 22 - (1 — € — fB),

S

since with probability zo the increase is at least by 11 — e — 3. Since 7. is an
e-optimal strategy we have val; < a+ €; and since val > o — e+ Z, we have the
following inequality

zz-(m—ﬂ—s)§26+i<36

= 29 < (since n < m1)

! . . . g’
= 29 < (similar to the inequality for z; < 4)
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a,l

a,2 ' a,2
COpren ‘——. D)
Fig. 2. A game with Biichi objective

’
Hence z1 4+ 29 < 52 ; and then we have

Prl=" (Reach(W} UW3)) > Prl=™ (Reach™(W} U W3) N (HL8 U HYP))
= Prl=™ (Reach™ (W} U W3) N HLP)
+ Prl=™ (Reach™ (W U W3) N HYP)
> Prle™ (Reach™(W}) N HP)
+ Prl=™ (Reach™ (W) N HYP)
> Pri= ™ (Hy?) + Pri=™ (Hp) — (21 + 22)
/

>1-°"+° >1-¢ (since e < &’).
4 2
The result follows.

Theorem 2 proves the limit-reachability property for tail objectives, under e-
optimal strategies, for small €. We present an example to show that Theorem 2
is not true for all objectives, or for tail objectives with arbitrary strategies.

Example 3. Observe that in the game shown in Example 2, the objective was
not a tail objective and we had W} U W} = (). Hence Theorem 2 need not
necessarily hold for all objectives. Also consider the game shown in Fig 2. In
the game shown s; and s are absorbing state. At sg the available moves for the
players are as follows: Mvi(sg) = { a } and Mva(sg) = { 1,2 }. The transition
function is as follows: if player 2 plays move 2, then the next state is s; and s
with equal probability, and if player 2 plays move 1, then the next state is sg.
The objective of player 1 is @ = Biichi({ sg, 1 }), i-e., to visit sg or s; infinitely
often. We have Wil = {51 } and W} = { s2 }. Given a strategy m that chooses
move 1 always, the set W} UW3 of states is reached with probability 0; however
7 is not an optimal or e-optimal strategy for player 2 (for e < }). This shows
that Theorem 2 need not hold if e-optimal strategies are not considered. In the
game shown, for an optimal strategy for player 2 (e.g., a strategy to choose move
2) the play reaches Wi U W, with probability 1.

Lemma 3 is immediate from Theorem 2.

Lemma 3. For all concurrent game structures G, for all tail objectives @ for
player 1 and @ for player 2, for all states s € S, we have

lim sup Prz”T(Reach(Wl1 U Wzl)) =1;
e=0 TEl(P),mEIl(P)

i sup Pl (Reach(W1)) = (1)a(®)(s);
=0 cr (@), rel.(®)
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lim sup Pr;’”(Reach(Wg)) = {(2)va1(P)(s).
€70 eI (®),rel. ()

Consider a non-zero sum reachability game G g such that the states in W} UWJ}
are transformed to absorbing states and the objectives of both players are reach-
ability objectives: the objective for player 1 is Reach(W{) and the objective for
player 2 is Reach(W,}). Note that the game G is not zero-sum in the following
sense: there are infinite paths w such that w ¢ Reach(W}) and w ¢ Reach(W3)
and each player gets a payoff 0 for the path w. We define e-Nash equilibrium of
the game Gr and relate some special e-Nash equilibrium of Gg with the values

of G.

Definition 2 (e-Nash equilibrium in Gg). A strategy profile (7*,7n*) € I'xII
is an e-Nash equilibrium at state s if the following two conditions hold:

Prz*’”*(Reach(Wll)) > sup Prz’”* (Reach(Wll)) —€
Tell

Prz*’”* (Reach(WQI)) > sup Prz*’”(Reach(WQI)) —€
well

Theorem 3 (Nash equilibrium of reachability game Ggr). The following
assertion holds for the game GR.

1. For all e > 0, there is an e-Nash equilibrium (7}, 7)) € I'.(®) x II.(P) such
that for all states s we have

lim Pr7s ™ (Reach(W})) = (1) v (P)(s)

e—0
lim Pr*7 (Reach(W3)) = (2))vat (B)(s).
E—

Proof. Tt follows from Lemma 3.

Note that in case of MDPs the strategy for player 2 is trivial, i.e., player 2 has
only one strategy. Hence in context of MDPs we drop the strategy m of player 2.
A specialization of Theorem 3 in case of MDPs yields Theorem 4.

Theorem 4. For all MDPs Gy, for all tail objectives @, we have

(L)var(@)(s) = sup Pr7(Reach(Wy)) = (1)) vai (Reach(Wy))(s)

Since the values in MDPs with reachability objectives can be computed in poly-
nomial time (by linear-programming) [3,9], our result presents a polynomial time
reduction of quantitative analysis of tail objectives in MDPs to qualitative anal-
ysis. Our results (mainly, Theorem 1 and Theorem 2) can also be used to present
simple construction of e-optimal strategies for w-regular objectives in concurrent
games. These results will be presented in a fuller version of the paper.
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Nash Equilibrium for
Upward-Closed Objectives*
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Abstract. We study infinite stochastic games played by n-players on
a finite graph with goals specified by sets of infinite traces. The games
are concurrent (each player simultaneously and independently chooses
an action at each round), stochastic (the next state is determined by a
probability distribution depending on the current state and the chosen
actions), infinite (the game continues for an infinite number of rounds),
nonzero-sum (the players’ goals are not necessarily conflicting), and undis-
counted. We show that if each player has an upward-closed objective,
then there exists an e-Nash equilibrium in memoryless strategies, for ev-
ery € > 0; and exact Nash equilibria need not exist. Upward-closure of an
objective means that if a set Z of infinitely repeating states is winning,
then all supersets of Z of infinitely repeating states are also winning.
Memoryless strategies are strategies that are independent of history of
plays and depend only on the current state. We also study the complexity
of finding values (payoff profile) of an e-Nash equilibrium. We show that
the values of an e-Nash equilibrium in nonzero-sum concurrent games
with upward-closed objectives for all players can be computed by com-
puting e-Nash equilibrium values of nonzero-sum concurrent games with
reachability objectives for all players and a polynomial procedure. As a
consequence we establish that values of an e-Nash equilibrium can be
computed in TFNP (total functional NP), and hence in EXPTIME.

1 Introduction

Stochastic games. Non-cooperative games provide a natural framework to
model interactions between agents [10]. The simplest class of non-cooperative
games consists of the “one-step” games — games with single interaction be-
tween the agents after which the game ends and the payoffs are decided (e.g.,
matrix games). However, a wide class of games progress over time and in stateful
manner, and the current game depends on the history of interactions. Infinite
stochastic games [13,6] are a natural model for such games. A stochastic game is
played over a finite state space and is played in rounds. In concurrent games, in
each round, each player chooses an action from a finite set of available actions,
simultaneously and independently of other players. The game proceeds to a new

* This research was supported in part by the NSF grants CCR-0225610 and CCR-
0234690, and by the SNSF under the Indo-Swiss Joint Research Programme.

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 271-286, 2006.
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state according to a probabilistic transition relation (stochastic transition ma-
trix) based on the current state and the joint actions of the players. Concurrent
games subsume the simpler class of turn-based games, where at every state at
most one player can choose between multiple actions. In verification and control
of finite state reactive systems such games proceed for infinite rounds, generat-
ing an infinite sequence of states, called the outcome of the game. The players
receive a payoff based on a payoff function that maps every outcome to a real
number.

Objectives. Payoffs are generally Borel measurable functions [9]. The payoff
set for each player is a Borel set B; in the Cantor topology on S (where S
is the set of states), and player i gets payoff 1 if the outcome of the game is
in B;, and 0 otherwise. In verification, payoff functions are usually index sets
of w-regular languages. The w-regular languages generalize the classical regular
languages to infinite strings, they occur in low levels of the Borel hierarchy (in
Y3N1II3), and form a robust and expressive language for determining payoffs for
commonly used specifications. The simplest w-regular objectives correspond to
safety (“closed sets”) and reachability (“open sets”) objectives.

Zero-sum games. Games may be zero-sum, where two players have directly
conflicting objectives and the payoff of one player is one minus the payoff of
the other, or nonzero-sum, where each player has a prescribed payoff function
based on the outcome of the game. The fundamental question for games is the
existence of equilibrium values. For zero-sum games, this involves showing a
determinacy theorem that states that the expected optimum value obtained by
player 1 is exactly one minus the expected optimum value obtained by player 2.
For one-step zero-sum games, this is von Neumann’s minmax theorem [17]. For
infinite games, the existence of such equilibria is not obvious, in fact, by using the
axiom of choice, one can construct games for which determinacy does not hold.
However, a remarkable result by Martin [9] shows that all stochastic zero-sum
games with Borel payoffs are determined.

Nonzero-sum games. For nonzero-sum games, the fundamental equilibrium
concept is a Nash equilibrium [8], i.e., a strategy profile such that no player
can gain by deviating from the profile, assuming the other player continues
playing the strategy in the profile. Again, for one-step games, the existence of
such equilibria is guaranteed by Nash’s theorem [8]. However, the existence of
Nash equilibria in infinite games is not immediate: Nash’s theorem holds for
finite bimatrix games, but in case of stochastic games, the strategy space is not
compact. The existence of Nash equilibria is known only in very special cases of
stochastic games. In fact, Nash equilibria may not exist, and the best one can
hope for is an e-Nash equilibrium for all € > 0, where an e-Nash equilibrium
is a strategy profile where unilateral deviation can only increase the payoff of
a player by at most . Exact Nash equilibria do exist in discounted stochastic
games [7]. For concurrent nonzero-sum games with payoffs defined by Borel sets,
surprisingly little is known. Secchi and Sudderth [12] showed that exact Nash
equilibria do exist when all players have payoffs defined by closed sets (“safety
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objectives” or IT; objectives). In the case of open sets (“reachability objectives”
or X objectives), the existence of e-Nash equilibrium for every € > 0, has
been established in [2]. For the special case of two-player games, existence of
e-Nash equilibrium, for every € > 0, is known for w-regular objectives [1] and
limit-average objectives [15,16]. The existence of e-Nash equilibrium in n-player
concurrent games with objectives in higher levels of Borel hierarchy than X'y and
11, has been an intriguing open problem; existence of e-Nash equilibrium is not
even known even when each player has a Biichi objective.

Result and proof techniques. In this paper we show that e-Nash equilibrium
exists, for every € > 0, for n-player concurrent games with upward-closed objec-
tives. However, exact Nash equilibria need not exist. Informally, an objective ¥
is an upward-closed objective, if a play w that visits a set Z of states infinitely
often is in ¥, then a play w’ that visits Z’ D Z of states infinitely often is also in
V. The class of upward-closed objectives subsumes Biichi and generalized Biichi
objectives as special cases. For n-player concurrent games our result extends the
existence of e-Nash equilibrium from the lowest level of Borel hierarchy (open
and closed sets) to a class of objectives that lie in the higher levels of Borel
hierarchy (upward-closed objectives can express objectives in II5) and subsumes
several interesting class of objectives. Along with the existence of e-Nash equilib-
rium, our result presents a finer characterization of e-Nash equilibrium showing
existence of e-Nash equilibrium in memoryless strategies (strategies that are in-
dependent of the history of the play and depend only on the current state). Our
result is organized as follows.

1. In Section 3 we develop some results on one player version of concurrent
games and n-player concurrent games with reachability objectives.

2. In Section 4 we use induction on the number of players, results of Section 3
and analysis of Markov chains to establish the desired result.

Complexity of e-Nash equilibrium. Computing the values of a Nash equi-
libria, when it exists, is another challenging problem [11]. For one-step zero-sum
games, equilibrium values and strategies can be computed in polynomial time
(by reduction to linear programming) [10]. For one-step nonzero-sum games, no
polynomial time algorithm is known to compute an exact Nash equilibrium, even
in two-player games [11]. From the computational aspects, a desirable property
of an existence proof of Nash equilibrium is its ease of algorithmic analysis. We
show that our proof for existence of e-Nash equilibrium is completely algorith-
mic. Our proof shows that the computation of an e-Nash equilibrium in n-player
concurrent games with upward-closed objectives can be achieved by computing
e-Nash equilibrium of games with reachability objectives and a polynomial time
procedure. Our result thus shows that computing e-Nash equilibrium for upward-
closed objectives is no harder than solving e-Nash equilibrium of n-player games
with reachability objectives by a polynomial factor. We then prove that an e-
Nash equilibrium can be computed in TFNP (total functional NP) and hence in
EXPTIME.
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2 Definitions

Notation. We denote the set of probability distributions on a set A by D(A).
Given a distribution § € D(A), we denote by Supp(6) = {z € A | 6(z) > 0} the
support of 6.

Definition 1 (Concurrent game structures). An n-player concurrent game
structure G = (S, A, I, Is,..., I, 8) consists of the following components:

— A finite state space S and a finite set A of mowves.

— Move assignments I'1,Ib,...,I,: S — 24\ (. Fori ¢ {1,2,...,n}, move
assignment I'; associates with each state s € S the non-empty set I';(s) C A
of moves available to player i at state s.

— A probabilistic transition function 6 : S x Ax A...x A — D(S), that gives
the probability 6(s,a1,as,...,a,)(t) of a transition from s to t when player i
plays move a;, for all s,t € S and a; € I;(s), fori € {1,2,...,n}.

We define the size of the game structure G to be equal to the size of the transition
function 6, specifically,

|g|:Z Z Z‘é(sﬁal""’an)(t)‘v

s€S  (a1,..,an)El(s)X...xITn(s) teS

where |6(s,a1,...,a,)(t)] denotes the space to specify the probability distri-
bution. At every state s € S, each player i chooses a move a; € I;(s), and
simultaneously and independently, and the game then proceeds to the successor
state ¢t with probability 6(s, a1, ase,...,an,)(t), for all t € S. A state s is called an
absorbing state if for all a; € I';(s) we have 6(s,a1,az,...,a,)(s) = 1. In other
words, at s for all choices of moves of the players the next state is always s. For
all states s € S and moves a; € I;(s) we indicate by Dest(s, a1, az,...,a,) =
Supp(6(s,ai,as,...,a,)) the set of possible successors of s when moves ay, as,
..., an are selected.

A path or a play w of G is an infinite sequence w = (sg, $1, S2, . . .) of states in S
such that for all k > 0, there are moves a¥ € I';(sy) and with §(sg, af, a}, ..., ak)
(sk+1) > 0. We denote by 2 the set of all paths and by (2, the set of all paths
w = (80, 81, S2, - . .) such that sg = s, i.e., the set of plays starting from state s.

Randomized strategies. A selector &; for player i € {1,2,...,n} is a function
& S — D(A) such that for all s € S and a € A, if £(s)(a) > 0 then a €
I;(s). We denote by A; the set of all selectors for player i € {1,2,...,n }.
A strategy o; for player i is a function o; : ST — A; that associates with
every finite non-empty sequence of states, representing the history of the play
so far, a selector. A memoryless strategy is independent of the history of the
play and depends only on the current state. Memoryless strategies coincide with
selectors, and we often write ¢; for the selector corresponding to a memoryless
strategy o;. A memoryless strategy o; for player i is uniform memoryless if the
selector of the memoryless strategy is an uniform distribution over its support,
i.e., for all states s we have o;(s)(a;) = 0 if a; & Supp(o;(s)) and o;(s)(a;) =
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|Supp(1ai(s))| if a; € Supp(o;(s)). We denote by X;, XM and ZUM the set of all
strategies, set of all memoryless strategies and the set of all uniform memoryless
strategies for player i, respectively. Given strategies o; for player i, we denote
by o the strategy profile (o1,09,...,0,). A strategy profile ¢ is memoryless
(resp. uniform memoryless) if all the component strategies are memoryless (resp.

uniform memoryless).

Given a strategy profile o = (01,09,...,0,) and a state s, we denote by
Outcome(s,0) = { w = (s0,81,82...) | so =8, fork >0, fori =1,2,...,n.
Jak. 0i((s0,51,..,5K))(a¥) > 0. and 6(sg,a¥,ak,... ak)(skr1) > 0} the set of

all possible plays from s, given 0. Once the starting state s and the strategies o;
for the players have been chosen, the game is reduced to an ordinary stochastic
process. Hence, the probabilities of events are uniquely defined, where an event
A C (2 is a measurable set of paths. For an event A C (2, we denote by Pr? (A)
the probability that a path belongs to A when the game starts from s and the
players follow the strategies o;, and o = (01, 02,...,0,).

Objectives. Objectives for the players in nonterminating games are specified
by providing the set of winning plays ¥ C {2 for each player. A general class
of objectives are the Borel objectives [9]. A Borel objective & C S“ is a Borel
set in the Cantor topology on S“. The class of w-regular objectives [14], lie
in the first 21/ levels of the Borel hierarchy (i.e., in the intersection of s
and II3). The w-regular objectives, and subclasses thereof, can be specified in
the following forms. For a play w = (so, s1, S2,...) € 2, we define Inf(w) = { s €
S | s, = s for infinitely many k& > 0} to be the set of states that occur infinitely
often in w.

1. Reachability and safety objectives. Given a game graph G, and a set T C S
of target states, the reachability specification Reach(T") requires that some
state in T' be visited. The reachability specification Reach(T") defines the
objective [Reach(T")] = { (so,s1,82,...) € 2] 3k > 0. s € T } of winning
plays. Given a set FF C S of safe states, the safety specification Safe(F')
requires that only states in F' be visited. The safety specification Safe(F)
defines the objective [Safe(F)] = { (so,s1,...) € 2 | Vk > 0. s € F } of
winning of plays.

2. Biichi and generalized Biichi objectives. Given a game graph G, and a set
B C S of Biichi states, the Biichi specification Biichi(B) requires that states
in B be visited infinitely often. The Biichi specification Biichi(B) defines the
objective [Biichi(B)] = {w € 2 | Inf(w) N B # 0 } of winning plays. Let
By, Bs, ..., B, be subset of states, i.e., each B; C S. The generalized Biichi
specification is the requires that every Biichi specification Biichi(B;) be sat-
isfied. Formally, the generalized Biichi objective is (V;c( 15, [Biichi(B;)].

3. Miiller and upward-closed objectives. Given a set M C 25 of Miiller set of
states, the Miiller specification Miiller(M) requires that the set of states
visited infinitely often in a play is exactly one of the sets in M. The Miiller
specification Miiller(M) defines the objective [Miller(M)] = {w € 2 |
Inf(w) € M} of winning plays. The upward-closed objectives form a sub-class
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of Miiller objectives, with the restriction that the set M is upward-closed.
Formally a set UC C 29 is upward-closed if the following condition hold: if
U e UC and U C Z, then Z € UC. Given a upward-closed set UC C 27,
the upward-closed objective is defined as the set [UpClo(UC)] = {w € 2|
Inf(w) € UC } of winning plays.

The upward-closed objectives subsumes Biichi and generalized Biichi objec-
tives. The upward-closed objectives also subsumes disjunction of Biichi objec-
tives. Since the Biichi objectives lie in the second level of the Borel hierarchy (in
I1,), it follows that upward-closed objectives can express objectives that lie in
II,. Miiller objectives are canonical forms to express w-regular objectives, and
the class of upward-closed objectives form a strict subset of Miiller objectives
and cannot express all w-regular properties.

We write ¥ for an arbitrary objective. We write the objective of player i as
¥,. The probability that a path satisfies a Miiller objective ¥ starting from state
s € S under a strategy profile o is denoted as Pr (¥).

Notations. Given a strategy profile ¢ = (01, 02,...,0,), we denote by o_; =

(01,02,.-,04-1,0i+1, - - -, 0p) the strategy profile with the strategy for player 4

removed. Given a strategy o, € X;, and a strategy profile o_;, we denote by

o_; Ua} the strategy profile (01,09, ...,0i-1,0},0i+1,...,05). We also use the

. . M
following notations: X = Xy x Xy X ... x X3 X7 = IM x XM x  x ¥M.
UM

X = EIUMXEQUMX...XEflJM; and E,i = ElXEQX...Ei,1XEi+1X...En.
. M

The notations for X'_,

set {1,2,...,n}.

Concurrent nonzero-sum games. A concurrent nonzero-sum game consists

of a concurrent game structure G with objective ¥; for player i. The zero-sum

values for the players in concurrent games with objective ¥; for player i are

defined as follows.

and 22\4 are similar. For n € N, we denote by [n] the

Definition 2 (Zero-sum values). Let G be a concurrent game structure with
objective WU; for player i. Given a state s € S we call the mazimal probability with
which player © can ensure that W; holds from s against all strategies of the other
players is the zero-sum value of player ¢ at s. Formally, the zero-sum value for
player i is given by the function valf (¥;) : S — [0,1] defined for all s € S by

valf (T3)(s) = supyex, inf, oo  Pri=“"(1;).

A two-player concurrent game structure G with objectives ¥; and ¥, for player 1
and player 2, respectively, is zero-sum if the objectives of the players are com-
plementary, i.e., ¥; = 2\ ¥,. Concurrent zero-sum games satisfy a quantitative
version of determinacy [9], stating that for all two-player concurrent games with
Miiller objectives ¥; and Ws, such that ¥3 = 2\ W5, and all s € S, we have
val (W1)(s) + val§ (P)(s) = 1. The determinacy also establishes existence of
e-Nash equilibrium, for all € > 0, in concurrent zero-sum games.

Definition 3 (e-Nash equilibrium). Let G be a concurrent game structure
with objective ¥; for player i. For ¢ > 0, a strategy profile o* = (o7,...,0}) €
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XY is an e-Nash equilibrium for a state s € S iff for all i € [n] we have

SUP,, e 5, P (W) < Pr? (W) +¢e. A Nash equilibrium is an e-Nash equilib-

rium with € = 0.

3 Markov Decision Processes and Nash Equilibrium for
Reachability Objectives

The section is divided in two parts: first we state some results about one player
concurrent game structures and then we state some results about n-player con-
current game structures with reachability objectives. The facts stated in this
section will play a key role in the analysis of the later sections.

Markov decision processes. We develop some facts about one player versions
of concurrent game structures, known as Markov decision processes (MDPs).
For i € [n], a player i-MDP is a concurrent game structure where for all s € S,
for all j € [n] \ { ¢} we have |I}(s)] = 1, ie., at every state only player i
can choose between multiple moves and the choice for the other players are
singleton. If for all states s € S, for all i € [n], |I(s)| = 1, then we have
a Markov chain. Given a concurrent game structure G, if we fix a memory-

less strategy profile o_; = (o1,...,0,-1,0i41,...,0,) for players in [n] \ {i },
then the game structure is equivalent to a player :-MDP G, ., with transi-
tion function: do_,(5,@:)(t) = 3(4) s aisiaii,.an O(5:Q1, a2, ., an)(t) X

[Licqupgin oi(s)(a;), for all s,t € S and a; € Ii(s). Similarly, if we fix a

M
memoryless strategy profile o € X7 for a concurrent game structure G, we ob-
tain a Markov chain, which we denote by G,. In an MDP, the sets of states that
play an equivalent role to the closed recurrent set of states in Markov chains are
called end components [3,4]. Without loss of generality, we consider player 1-
MDPs and since the set X _; is singleton for player 1-MDPs we only consider
strategies for player 1.

Definition 4 (End components and maximal end components). Given
a player 1-MDP G, an end component (EC) in G is a subset C C S such that
there is a memoryless strategy o1 € XM for player 1 under which C forms a
closed recurrent set in the resulting Markov chain, i.e., in the Markov chain G, .
Given a player 1-MDP G, an end component C' is a maximal end component, if
the following condition hold: if C C Z and Z is an end component, then C = Z,
i.e., there is no end component that encloses C'.

Graph of a MDP. Given a player 1-MDP G, the graph of G is a directed graph
(S, E) with the set E of edges defined as follows: E = { (s,t) | s,t € S. Jaq €
I (s). t € Dest(s,a1) }, i.e., E(s) = {t] (s,t) € E } denotes the set of possible
successors of the state s in the MDP G.

The following lemma states that in a player 1-MDP, for all strategies of
player 1, the set of states visited infinitely often is an end component with
probability 1. Lemma 2 follows easily from Lemma 1. Lemma 3 can be proved
using the properties of end components.
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Lemma 1 ([4,3]). Let C be the set of end components of a player 1-MDP G.
For all strategies o1 € X1 and all states s € S, we have PrI* ([Miller(C)]) = 1.

Lemma 2. Let C be the set of end components and Z be the set of mazimal end
components of a player 1-MDP G. Then for all strategies o1 € X1 and all states
s € S, we have PrJ' ([Reach(L)]) = 1, where L = Jpee C = Uyez Z; and

Lemma 3. Given a player 1-MDP G and an end component C, there is a uni-
form memoryless strategy o1 € XM such that for all states s € C, we have
Pri*{w | Inf(w)=C1}) =1.

Nash equilibrium for reachability objectives. The existence of e-Nash equi-
librium in memoryless strategies in n-player games with reachability objective
[Reach(R;)] for player i, for R; C S, was shown in [2]. The result can be ex-
tended to show the following theorem; we omit the technical details due to lack
of space.

Theorem 1 (¢-Nash equilibrium of full support). For every n-player game
structure G, with reachability objective [Reach(R;)] for player i, for everye > 0,
there exists a memoryless e-Nash equilibrium o* = (05,05, ...,0)) such that for
all s € S, for all i € [n], we have Supp(o}(s)) = Ii(s).

4 Nash Equilibrium for Upward-Closed Objectives

In this section we prove existence of memoryless e-Nash equilibrium, for all e > 0,
for all n-player concurrent game structures, with upward-closed objectives for all
players. The key arguments use induction on the number of players, the results of
Section 3 and analysis of Markov chains and MDPs. We present some definitions
required for the analysis of the rest of the section.

MDP and graph of a game structure. Given an n-player concurrent game
structure G, we define an associated MDP G of G and an associated graph of G.
The MDP G = (5, A4, I',6), where all players unite as a single player, is defined
as follows:

- S=S5A=AxAx.. xA=A" and I'(s) = {(a1,az2,...,an) | a; € Ii(s) }.
— 6(s,(a1,a2,...,a,)) = 6(s,a1,az2,...,an).

The graph of the game structure G is defined as the graph of the MDP G.

Games with absorbing states. Given a game structure G we partition the
state space of G as follows:

1. The set of absorbing states in S are denoted as T, ie., T = {s € C |
s is an absorbing state }.

2. The set U of states that consists of states s such that |I5(s)| = 1 for all i € [n]
and (U x S)NE C U x T. That is at states in U there is no non-trivial choice
of moves for the players; thus for any state s in U the game proceeds to the set

T according to the probability distribution of the transition function § at s.
3. C=8S\(UUT).
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Reachable sets. Given a game structure G and a state s € S, we define
Reachable(s,G) = {t € S| there is a path from s to ¢ in the graph of G } as
the set of states that are reachable from s in the graph of the game structure.
For a set Z C S, we denote by Reachable(Z,G) the set of states reachable from
a state in Z, i.e., Reachable(Z,G) = |, Reachable(s,G). Given a set Z, let
Zr = Reachable(Z,G). We denote by G | Zg, the sub-game induced by the
set Zg of states. Similarly, given a set F C 2%, we denote by F | Zg the set
{U|3FeF.U=FnNZg}.

Terminal non-absorbing maximal end components (TNEC). Given a game
structure G, let Z be the set of maximal end components of the MDP G of G.
Let £ = Z\ T be the set of maximal non-absorbing end components and let
H = Jpc, L. A maximal end component Z C C, is a terminal non-absorbing
maximal end component (TNEC), if Reachable(Z,G)N(H\ Z) = 0, i.e., no other
non-absorbing maximal end component is reachable from Z.

We consider game structures G with upward-closed objective [UpClo(UC})]
for player i. We also denote by R; = {s € T | {s} € UC; } the set of the
absorbing states in T' that are in UC;. We now prove the following key result.

Theorem 2. For all n-player concurrent game structures G, with upward-closed
objective [UpClo(UC};)] for player i, one of the following conditions (C1 or C2)
hold:

1. (Condition C1) There exists a memoryless strategy profile o € M such that
in the Markov chain G, there is closed recurrent set Z C C, such that o is
a Nash equilibrium for all states s € Z.

2. (Condition C2) There exists a state s € C, such that for all € > 0, there

erists a memoryless e-Nash equilibrium o € M for state s, such that
Pry([Reach(T)]) = 1, and for all s1 € S, and for all i € [n], we have
Supp(i(s1)) = Ii(s1)-

The proof of Theorem 2 is by induction on the number of players. We first
analyze the base case.

Base Case. (One player game structures or MDPs) We consider player 1-MDPs
and analyze the following cases:

— (Case 1.) If there in no TNEC in C, then it follows from Lemma 2 that for
all states s € C, for all strategies o1 € X1, we have Pr?' ([Reach(T)]) = 1,
and Pry* ([Reach(R;)]) = Pr?* ([UpClo(UC)]) (recall Ry = {se€ T | {s} €
UC1}). The result of Theorem 1 yields an e-Nash equilibrium o; that satisfies
condition C2 of Theorem 2, for all states s € C.

— (Case 2.) Else let Z C C be a TNEC.

1. If Z € UC, fix a uniform memoryless strategy o; € XM such that
for all s € Z, we have Pr{*({ w | Inf(w) = Z }) = 1 and hence
Pr7* ([UpClo(UC1)]) = 1 (such a strategy exists by Lemma 3, since
Z is an end component). In other words, Z is a closed recurrent set
in the Markov chain G,, and the objective of player 1 is satisfied with
probability 1. Hence condition C1 of Theorem 2 is satisfied.
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2. If Z ¢ UCq, then since UC is upward-closed, for all set 21 C Z, Z; &
UC1. Hence for any play w, such that w € [Safe(Z)], we have Inf(w) C Z,
and hence w ¢ [UpClo(UC)]. Since Z is a TNEC, for all states s € Z
we have

sup Prf'([UpClo(UC1)]) = sup Pr*([Reach(R1)]).
01€X, 01€X,

If the set of edges from Z to UUT is empty (recall S\ C = UUT), then
for all strategies o1 we have Pr' ([UpClo(UC1)]) = 0, and hence any
uniform memoryless strategy can be fixed and condition C1 of Theorem 2
can be satisfied. Otherwise, the set of edges from Z to UUT is non-empty,
and then for € > 0, consider an e-Nash equilibrium for reachability ob-
jective [Reach(Ry)] satisfying the conditions of Theorem 1. Since Z is
an end component, for all states s € Z, Supp(o1(s)) = I'1(s), and the
set of edges to Z to U UT is non-empty it follows that for all states
s € Z, we have Pr?*([Reach(T")]) = 1. Thus condition C2 of Theorem 2
is satisfied.

We prove the following lemma, that will be useful for the analysis of the
inductive case.

Lemma 4. Consider a player i-MDP G with an upward-closed objective UpClo
ObjUC,; for playeri. Let o; € XM be a memoryless strategy and Z C S be such
that for all s € Z, we have Supp(c;(s)) = Ii(s) and Z is a closed recurrent set
in the Markov chain G,,. Then o; is a Nash equilibrium (optimal strategy) for
all states s € Z.

Proof. The proof follows from the analysis of two cases.

1. If Z € UC}, then since Z is a closed recurrent set in G,,, for all states s € S
we have Pr{’({w | Inf(w) = Z }) = 1. Hence we have Prl* ([UpClo(UC,)]) =
1. The result follows.

2. We now consider the case such that Z ¢ UC;. Since for all s € Z, we
have Supp(o;(s)) = I;(s), it follows that for all strategies o € X; and for
all s € Z, we have Outcome(s, o) C Outcome(s,o;) C [Safe(Z)] (since
Z is a closed recurrent set in G,,). It follows that for all strategies o} we
have Prg’;([[Safe(Z)]]) = 1. Hence for all strategies o, for all states s € Z
we have Pr%i({ w | Inf(w) € Z}) = 1. Since Z ¢ UC;, and UC; is
upward-closed, it follows that for all strategies of, for all states s € Z
we have Pr‘s’é([[UpCIO(UCi)]]) = 0. Hence for all states s € Z, we have
SUP, ey, Pr;’;([[UpClo(UCi)]]) = 0 = Pr7*([UpClo(UC;)]). The result fol-

lows.

Inductive case. Given a game structure G, consider the MDP G: if there are
no TNEC in C, then the result follows from analysis similar to Case 1 of the
base case. Otherwise consider a TNEC Z C C in G. If for every player ¢ we have

. UM
Z € UC;, then fix a uniform memoryless strategy o € X such that for all
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s € Z,Pr{({w]| Inf(w) = Z}) =1 (such a strategy exists by Lemma 3, since Z is
an end component in G). Hence, for all ¢ € [n] we have Pr? ([UpClo(UC;)]) = 1.
That is Z is a closed recurrent set in the Markov chain G, and the objective of
each player is satisfied with probability 1 from all states s € Z. Hence condition
C1 of Theorem 2 is satisfied. Otherwise, there exists ¢ € [n], such that Z ¢ UC},
and without loss of generality we assume that this holds for player 1, i.e., Z &
UC:,.If Z ¢ UC1, then we prove Lemma 5 to prove Theorem 2.

Lemma 5. Consider an n-player concurrent game structure G, with upward-
closed objective [UpClo(UC;)] for player i. Let Z be a TNEC in G such that
Z ¢ UCy and let Zr = Reachable(Z,G). The following assertions hold:

1. If there exists o1 € XM, such that for all s € Z, Supp(o1(s)) = I1(s), and
condition C1 of Theorem 2 holds in G», | Zgr, then condition C1 Theorem 2
holds in G.

2. Otherwise, condition C2 of Theorem 2 holds in G.

Proof. Given a memoryless strategy oy, fixing the strategy oy for player 1, we
get an n — 1-player game structure and by inductive hypothesis either condition
C1 or C2 of Theorem 2 holds.

— Case 1. Suppose there is a memoryless strategy o; € X, such that for
all s € Z, Supp(o1(s)) = I'i(s), and condition C1 of Theorem 2 holds in
Go, | Zr. Let 01 = (02,03,...,0,) be the memoryless Nash equilibrium
and Z; C Z be the closed recurrent set in G,_,us, satisfying the condition
C1 of Theorem 2 in G,,. Observe that (Z;,01) satisfy the conditions of
Lemma 4 in the MDP G, ,. Thus an application of Lemma 4 yields that o
is a Nash equilibrium for all states s € Z;, in the MDP G,_,. Since o_1 is
a Nash equilibrium for all states in Z; in G,,, it follows that 0 = o_1 U0
and Z; satisfy condition C1 of Theorem 2.

— For € > 0, consider a memoryless e-Nash equilibrium o = (o1,09,...,0,)
in G with objective [Reach(R;)] for player 4, such that for all s € S, for all
i € [n], we have Supp(o;(s)) = I;(s) (such an e-Nash equilibrium exists from
Theorem 1). We now prove the desired result analyzing two sub-cases:

1. Suppose there exists j € [n], and Z; C Z, such that Z; € UC;, and Z;
is an end component in G, _, then let o’ be a memoryless strategy for
player j, such that Z; is a closed recurrent set of states in the Markov
chain gc,_].w;. Let o' =0_; U O’;». Since Z; € UC}, it follows that for

all states s € Z;, we have Pr? (JUpClo( UC;)]) =1, and hence player j
has no incentive to deviate from o’. Since for all o;, for ¢ # j, and
for all states s € S, we have Supp(c;)(s) = I;(s), and Z; is a closed
recurrent set in G,, it follows from Lemma 4 that for all j # i, o; is a
Nash equilibrium in G, . Hence we have o’ is a Nash equilibrium for all
states s € Z; in G and condition C1 of Theorem 2 is satisfied.

2. Hence it follows that if Case 1 fails, for all i € [n], all end components
Z; C Z,in G,_,, we have Z; & UC;. Hence for all i € [n], for all s € Z, for

all o/ € X, we have Pr?-"%i ([UpClo(UC;)]) = PrZ~"% ([Reach(R;)]).
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Since o is an e-Nash equilibrium with objectives [Reach(R;)] for player ¢
in G, it follows that ¢ is an e-Nash equilibrium in G with objectives
[UpClo(UC;)] for player i. Moreover, if there is an closed recurrent set
Z' C Z in the Markov chain G,, then case 1 would have been true
(follows from Lemma 4). Hence if case 1 fails, then it follows that there
is no closed recurrent set Z’ C Z in G,, and hence for all states s € Z,
we have Pr? ([Reach(T")]) = 1. Hence condition C2 of Theorem 2 holds,
and the result follows.

Inductive application of Theorem 2. Given a game structure G, with upward-
closed objective [UpClo(UC);)] for player i, to prove existence of e-Nash equilib-
rium for all states s € S, for € > 0, we apply Theorem 2 recursively. We convert
the game structure G to G’ as follows.

Transformation 1. If condition C1 of Theorem 2 holds, then let Z be the closed
recurrent set that satisfy the condition C1 of Theorem 2.

— In G’ convert every state s € Z to an absorbing state;

— if Z ¢ UC}, for player i, then the objective for player ¢ in G’ is UC,;

— if Z € UC; for player i, the objective for player i in G is modified to include
every state s € Z, i.e., for all Q C S, if s € @Q, for some s € Z, then Q is
included in UC;.

Observe that the states in Z are converted to absorbing states and will be inter-
preted as states in T in G'.
Transformation 2. If condition C2 of Theorem 2 holds, then let ¢* be an
15/~ Nash equilibrium from state s, such that Pr? ([Reach(T)]) = 1. The state
is converted as follows: for all ¢ € [n], the available moves for player i at s is
reduced to 1, i.e., for all ¢ € [n], I;(s) = { a; }, and the transition function ¢’ in
G’ at s is defined as:

Pr? ([Reach(t ifteT

65, a1,02.-...a)(t) = { o ([feackOD

0 otherwise.

Note that the state s can be interpreted as a state in U in G'.

To obtain an e-Nash equilibrium for all states s € S in G, it suffices to obtain
an e-Nash equilibrium for all states in G’. Also observe that for all states in UUT,
Nash equilibrium exists by definition. Applying the transformations recursively
on G', we proceed to convert every state to a state in U U T, and the desired
result follows. This yields Theorem 3.

Theorem 3. For all n-player concurrent game structures G, with upward-closed
objective [UpClo(UC,)] for player i, for all e > 0, for all states s € S, there
exists a memoryless strategy profile o*, such that o* is an e-Nash equilibrium
for state s.

Remark 1. Upward-closed objectives are not closed under complementation.
Hence Theorem 3 is not a generalization of determinacy result for concurrent
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Algorithm 1. UpCICndC1

Input : An n-player game structure G and upward-closed objective [UpClo(UC})]
for player ¢, for all i € [n].
Output: Either (Z, o) satisfying condition C1 of Theorem 2 or else (), 0).
1.ifn =0,
1.1 if there is a non-absorbing closed recurrent set Z in the Markov chain G,
then return (Z,0).
1.2 else return (0,0).
2. Z =ComputeMaximalEC(G)
(i.e., Z is the set of maximal end components in the MDP of G).
3. if there is no TNEC in G, return (0, 0).
4. if there exists Z € Z such that for all i € [n], Z € UC},
4.1. return (Z, o) such that o € 2" and Z is closed recurrent set in Go.
5. Let Z be a TNEC in G, and let Zr = Reachable(Z,G).
6. else without loss of generality let Z ¢ UC,,.
6.1. Let o, € ZYM such that for all states s € Zg, on(s) = I'n(s).
6.2. (Z1,0) = UpCICndC1 (G,, | Zr,n — 1,[UpClo(UC; | Zg)], % € [n — 1])
6.3. if (Z1 = 0) return (0,0); else return (Z1,0-, Uoy).

zero-sum games with upward-closed objective for one player. For example in con-
current zero-sum games with Biichi objective for a player, e-optimal strategies
require infinite-memory in general, but the complementary objective of a Biichi
objective is not upward-closed. In contrast, we show the existence of memory-
less e-Nash equilibrium for n-player concurrent games where each player has an
upward-closed objective.

5 Computational Complexity

In this section we present an algorithm to compute an e-Nash equilibrium for
n-player game structures with upward-closed objectives, for € > 0. A key result
for the algorithmic analysis is Lemma 6.

Lemma 6. Consider an n-player concurrent game structure G, with upward-
closed objective [UpClo(UC;)] for player i. Let Z be a TNEC in G such that
Z & UC,, and let Zr = Reachable(Z,G). The following assertion hold.

— Suppose there exists o, € XM | such that for all s € Z, Supp(o,,(s)) = I'n(s),
and condition C1 of Theorem 2 holds in G,, | Zgr. Let o} € UM such
that for all s € Z we have Supp(o;(s)) = I (s) (i.e., o} is an uniform
memoryless strategy that plays all available moves at all states in Z ). Then

condition C1 holds in Go» | ZR.

Lemma 6 presents the basic principle to identify if condition C1 of Theorem 2
holds in a game structure G with upward-closed objective [UpClo(UC;)] for
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Algorithm 2. NashEqmCompute

Input : An n-player game structure G and upward-closed objective[UpClo(UC};)]
for player ¢, for all i € [n].
Output: Either (Z, o) satisfying condition C1 of Theorem 2
or else (s, o) satisfying condition C2 of Theorem 2.
. Z =ComputeMaximalEC(G)
. if there is no TNEC in G,
then return (s,ReachEqmFull(G,n,¢)) for some s € C.
. Let Z be a TNEC in G, and let Zr = Reachable(Z,G).
. Let (Z1,0) = UpCICndC1 (G,, | Zr,n — 1,[UpClo(UC; | Zr)], % € [n —1])
. if (Z1 # 0) return (Z1,0);
. Let 0 = ReachEqmFull(G,n,¢).
. For s € C, if o is an e-Nash equilibrium for s,
with objectives [UpClo(UC;)] for player i,
then return (s,0).

[N

N O U W

player 7. An informal description of the algorithm (Algorithm 1) is as follows: the
algorithm takes as input a game structure G of n-players, objectives [UpClo(UC})]
for player i, and it either returns (Z, o) satisfying the condition C1 of Theorem 2
or returns ((, 0). Let G be the MDP of G, and let Z be the set of maximal end
components in G (computed in Step 2 of Algorithm 1). If there is no TNEC
in G, then condition C1 of Theorem 2 fails and (), () is returned (Step 3 of
Algorithm 1). If there is a maximal end component Z € Z such that for all

i € [n], Z € UC;, then fix an uniform memoryless strategy o € 5™ such that
Z is a closed recurrent set in G, and return (Z,0) (Step 4 of Algorithm 1).
Else let Z be a TNEC and without of loss of generality let Z ¢ UC,. Let
Zr = Reachable(Z,G), and fix a strategy o, € UM such that for all s € Zg,
Supp(o,(s)) = In(s). The n — 1-player game structure G,, | Zg is solved by
an recursive call (Step 6.3) and the result of the recursive call is returned. It
follows from Lemma 6 and Theorem 2 that if Algorithm 1 returns (0,(), then
condition C2 of Theorem 2 holds for some state s € C. Let T'(|G|,n) denote the
running time of Algorithm 1 on a game structure G with n-players. Step 2 of the
algorithm can be computed in O(|G|?) time (see [5] for a O(|G|?) time algorithm
to compute maximal end components of a MDP). Step 4 can be achieved in
time linear in the size of the game structure. Thus we obtain the recurrence:
T(19],n) = O(G[%) + T(IG],n — 1). Hence we have T(IG], n) = O(n - |GI2).

Basic principle of Algorithm 2. Consider a game structure G with objective
[UpClo(UC;)] for player i. Let o be a memoryless strategy profile such that for
all states s € S, for all i € [n], we have Supp(c;(s)) = Ii(s), and (s, o) satisfy
condition C2 of Theorem 2 for some state s € C. Let Zs; = Reachable(s,G).
It follows from the base case analysis of Theorem 2 and Lemma 5, that for all
i € [n], in the MDP G, _. | Zs, for all end components Z C Z;, Z ¢ UC;, and
hence in G, , [ Zs, the objective [UpClo(UC})] is equivalent to [Reach(R;)].
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It follows that if condition C2 of Theorem 2 holds at a state s, then for all
e > 0, any memoryless e-Nash equilibrium o in G with objective [Reach(R;)]
for player ¢, such that for all s € S, for all i € [n], Supp(oi(s)) = I3(s), is
also an e-Nash equilibrium in G with objective [UpClo(UC,)] for player . This
observation is formalized in Lemma 7. Lemma 7 and Algorithm 1 is the basic

principle to obtain a memoryless e-Nash equilibrium at a non-empty set of states
in C.

Lemma 7. For a game structure G with objective [UpClo(UC;)] for player i,
let o be a memoryless strategy profile such for all states s € S, for all i € [n],
we have Supp(o;(s)) = Ii(s), and (s,0) satisfy condition C2 of Theorem 2 for
some state s € C. For € > 0, any memoryless e-Nash equilibrium o’ in G for
state s with objective [Reach(R;)] for player i, such that for all s € S, for all
i € [n], Supp(ol(s)) = Ii(s), is also an e-Nash equilibrium in G for state s with
objective [UpClo(UC,)] for player i.

Description of Algorithm 2. We now describe Algorithm 2 that compute an
e-Nash equilibrium at some state s of a game structure G, with upward-closed
objective [UpClo(UC;)] for player i, for ¢ > 0. In the algorithm the proce-
dure ReachEqm€Full returns a strategy o = (01, 09, ..., 0,) such that for all s,
Supp(o;(s)) = Ii(s), and o is an e-Nash equilibrium in G with reachability objec-
tive [Reach(R;)] for player ¢, from all states in S. The algorithm first computes
the set of maximal end components in G. If there is no TNEC in G, then it in-
vokes ReachEqmFull. Otherwise, for some TNEC Z and Zr = Reachable(Z,G),
it invokes Algorithm 1 on the sub-game G [ Zg. If Algorithm 1 returns a non-
empty set (i.e., condition C1 of Theorem 2 holds), then the returned value of
Algorithm 1 is returned. Otherwise, the algorithm invokes ReachEqm€Full and
returns (s,o) satisfying condition C2 of Theorem 2. Observe that the proce-
dure ReachEqmFull is invoked when: either there is no TNEC in G, or con-
dition C2 holds in G [ Zg. It suffices to compute a memoryless §-Nash equi-
librium ¢’ = (01,0%,...,0,,) in G | Zr with reachability objective [Reach(R;)]
for player i, and then slightly modify ¢’ to a memoryless strategy o to obtain
(s,0) as desired. Hence it follows that the complexity of ReachEqmFull can be
bounded by the complexity of a procedure to compute memoryless e-Nash equi-
librium in game structures with reachability objectives. Thus we obtain that the
running time of Algorithm 2 is bounded by O(n - |G|?) + ReachEqm(|G|, n, ),
where ReachEqm is the complexity of a procedure to compute memoryless
e-Nash equilibrium in games with reachability objectives.

The inductive application of Theorem 2 to obtain Theorem 3 using transfor-
mation 1 and transformation 2 shows that Algorithm 2 can be applied |S|-times
to compute a memoryless e-Nash equilibrium for all states s € S. For all con-
stants € > 0, existence of polynomial witness and polynomial time verification
procedure for ReachEqm(G,n,¢) has been proved in [2]. It follows that for
all constants £ > 0, ReachEqm(G, n,¢) is in the complexity class TFNP. The
above analysis yields Theorem 4.
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Theorem 4. Given an n-player game structure G with upward-closed objective
[UpClo(UC;)] for player i, a memoryless e-Nash equilibrium for all s € S can
be computed (a) in TFNP for all constants € > 0; and (b) in time O(|S] - n -
IG?) + |S| - ReachEqm(G, n, €).

6 Conclusion

In this paper we establish existence of memoryless e-Nash equilibrium, for all
€ > 0, for all n-player concurrent game structures, with upward-closed objectives
for all players, and also present an algotihm to compute an e-Nash equilibrium.
The existence of e-Nash equilibrium, for all € > 0, in n-player concurrent game
structures with w-regular objectives, and other class of objectives in the higher
levels of Borel hierarchy are interesting open problems.
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Abstract. We study observation-based strategies for two-player turn-
based games on graphs with omega-regular objectives. An observation-
based strategy relies on imperfect information about the history of a
play, namely, on the past sequence of observations. Such games occur
in the synthesis of a controller that does not see the private state of
the plant. Our main results are twofold. First, we give a fixed-point
algorithm for computing the set of states from which a player can win
with a deterministic observation-based strategy for any omega-regular
objective. The fixed point is computed in the lattice of antichains of
state sets. This algorithm has the advantages of being directed by the
objective and of avoiding an explicit subset construction on the game
graph. Second, we give an algorithm for computing the set of states from
which a player can win with probability 1 with a randomized observation-
based strategy for a Biichi objective. This set is of interest because in the
absence of perfect information, randomized strategies are more powerful
than deterministic ones. We show that our algorithms are optimal by
proving matching lower bounds.

1 Introduction

Two-player games on graphs play an important role in computer science. In
particular, the controller synthesis problem asks, given a model for a plant, to
construct a model for a controller such that the behaviors resulting from the
parallel composition of the two models respects a given specification (e.g., are
included in an w-regular set). Controllers can be synthesized as winning strate-
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include realizability and compatibility checking, where the players represent par-
allel processes of a system, or its environment [1,11,6].

Most results about two-player games played on graphs make the hypothesis of
perfect information. In this setting, the controller knows, during its interaction
with the plant, the exact state of the plant. In practice, this hypothesis is often
not reasonable. For example, in the context of hybrid systems, the controller ac-
quires information about the state of the plant using sensors with finite precision,
which return imperfect information about the state. Similarly, if the players rep-
resent individual processes, then a process has only access to the public variables
of the other processes, not to their private variables [19,2].

Two-player games of imperfect information are considerably more
complicated than games of perfect information. First, decision problems for
imperfect-information games usually lie in higher complexity classes than their
perfect-information counter-parts [19,14,2]. The algorithmic difference is often
exponential, due to a subset construction that, similar to the determinization of
finite automata, turns an imperfect-information game into an equivalent perfect-
information game. Second, because of the determinization, no symbolic algo-
rithms are known to solve imperfect-information games. This is in contrast to
the perfect-information case, where (often) simple and elegant fixed-point algo-
rithms exist [12,8]. Third, in the context of imperfect information, deterministic
strategies are sometimes insufficient. A game is turn-based if in every state one
of the players chooses a successor state. While deterministic strategies suffice
to win turn-based games of perfect information, turn-based games of imperfect
information require randomized strategies to win with probability 1 (see Exam-
ple 1). Fourth, winning strategies for imperfect-information games need memory
even for simple objectives such as safety and reachability (for an example see the
technical-report version of this paper). This is again in contrast to the perfect-
information case, where turn-based safety and reachability games can be won
with memoryless strategies.

The contributions of this paper are twofold. First, we provide a symbolic fixed-
point algorithm to solve games of imperfect information for arbitrary w-regular
objectives. The novelty is that our algorithm is symbolic; it does not carry out
an explicit subset construction. Instead, we compute fixed points on the lattice
of antichains of state sets. Antichains of state sets can be seen as a symbolic
and compact representation for C-downward-closed sets of sets of states.! This
solution extends our recent result [10] from safety objectives to all w-regular
objectives. To justify the correctness of the algorithm, we transform games of
imperfect information into games of perfect information while preserving the ex-
istence of winning strategies for every Borel objective. The reduction is only part
of the proof, not part of the algorithm. For the special case of parity objectives,
we obtain a symbolic EXPTIME algorithm for solving parity games of imperfect

1 'We recently used this symbolic representation of C-downward-closed sets of state
sets to propose a new algorithm for solving the universality problem of nondeter-
ministic finite automata. First experiments show a very promising performance;
(see [9]).
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information. This is optimal, as the reachability problem for games of imperfect
information is known to be EXPTIME-hard [19].

Second, we study randomized strategies and winning with probability 1 for
imperfect-information games. To our knowledge, for these games no algorithms
(symbolic or not) are present in the literature. Following [7], we refer to winning
with probability 1 as almost-sure winning (almost winning, for short), in contrast
to sure winning with deterministic strategies. We provide a symbolic EXPTIME
algorithm to compute the set of almost-winning states for games of imperfect
information with Biichi objectives (reachability objectives can be obtained as a
special case, and for safety objectives almost winning and sure winning coincide).
Our solution is again justified by a reduction to games of perfect information.
However, for randomized strategies the reduction is different, and considerably
more complicated. We prove our algorithm to be optimal, showing that comput-
ing the almost-winning states for reachability games of imperfect information is
EXPTIME-hard. The problem of computing the almost-winning states for coBiichi
objectives under imperfect information in EXPTIME remains an open problem.

Related work. In [17], Pnueli and Rosner study the synthesis of reactive mod-
ules. In their framework, there is no game graph; instead, the environment and
the objective are specified using an LTL formula. In [14], Kupferman and Vardi
extend these results in two directions: they consider CTL* objectives and im-
perfect information. Again, no game graph, but a specification formula is given
to the synthesis procedure. We believe that our setting, where a game graph
is given explicitly, is more suited to fully and uniformly understand the role of
imperfect information. For example, Kupferman and Vardi assert that imperfect
information comes at no cost, because if the specification is given as a CTL (or
CTL") formula, then the synthesis problem is complete for EXPTIME (resp., 2EX-
PTIME), just as in the perfect-information case. These hardness results, however,
depend on the fact that the specification is given compactly as a formula. In our
setting, with an explicit game graph, reachability games of perfect information
are PTIME-complete, whereas reachability games of imperfect information are
EXPTIME-complete [19]. None of the above papers provide symbolic solutions,
and none of them consider randomized strategies.

It is known that for Partially Observable Markov Decision Processes
(POMDPs) with boolean rewards and limit-average objectives the quantitative
analysis (whether the value is greater than a specified threshold) is EXPTIME-
complete [15]. However, almost winning is a qualitative question, and our hard-
ness result for almost winning of imperfect-information games does not follow
from the known results on POMDPs. We propose in Section 5 a new proof of
the hardness for sure winning of imperfect-information games with reachability
objectives, and we extend the proof to almost winning as well. To the best of
our knowledge, this is the first hardness result that applies to the qualitative
analysis of almost winning in imperfect-information games. A class of semiper-
fect-information games, where one player has imperfect information and the
other player has perfect information, is studied in [4]. That class is simpler than
the games studied here; it can be solved in NP N coNP for parity objectives.
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2 Definitions

A game structure (of imperfect information) is a tuple G = (L,ly, X, A, O,~),
where L is a finite set of states, o € L is the initial state, 3/ is a finite alphabet,
A C L x X xLis a set of labeled transitions, O is a finite set of observations,
and 7 : O — 25\ () maps each observation to the set of states that it represents.
We require the following two properties on G: (i) for all £ € L and all 0 € X,
there exists ¢/ € L such that (¢,0,¢') € A; and (i¢) the set {vy(o) | 0 € O}
partitions L. We say that G is a game structure of perfect information if O = L
and y(£) = {¢} for all £ € L. We often omit (O,~) in the description of games
of perfect information. For 0 € ¥ and s C L, let PostS(s) = {¢/ e L |3 € s :
(L,0,0') € A}

Plays. In a game structure, in each turn, Player 1 chooses a letter in X', and
Player 2 resolves nondeterminism by choosing the successor state. A play in
G is an infinite sequence m = flyooly ...0n—1€n0p ... such that (i) €y = I,
and (i7) for all i« > 0, we have (¢;,0;,¢;+1) € A. The prefix up to £, of the
play 7 is denoted by m(n); its length is |w(n)| = n + 1; and its last element is
Last(m(n)) = £,. The observation sequence of 7 is the unique infinite sequence
v H7) = 000001 ...0n_10,0, ... such that for all @ > 0, we have ¢; € v(0;).
Similarly, the observation sequence of m(n) is the prefix up to o, of v~1(x).
The set of infinite plays in G is denoted Plays(G), and the set of corresponding
finite prefixes is denoted Prefs(G). A state ¢ € L is reachable in G if there
exists a prefix p € Prefs(G) such that Last(p) = ¢. For a prefix p € Prefs(G),
the cone Cone(p) = { m € Plays(G) | pis a prefix of 7 } is the set of plays
that extend p. The knowledge associated with a finite observation sequence 7 =
00000101 - - .On—10, is the set K(7) of states in which a play can be after this
sequence of observations, that is, K(1) = {Last(p) | p € Prefs(G) and v~ 1(p) =
T Foro € X, £ € L, and p,p’ € Prefs(G) with p' = p-o - ¥, let op € O be the
unique observation such that £ € y(og). Then K(y~1(p")) = Post (K(y~1(p))) N
7(00).

Strategies. A deterministic strategy in G for Player 1 is a function « : Prefs(G) —
Y. For a finite set A, a probability distribution on A is a function x : A — [0, 1]
such that ) _, x(a) = 1. We denote the set of probability distributions on A
by D(A). Given a distribution x € D(A), let Supp(k) = {a € A | k(a) > 0}
be the support of k. A randomized strategy in G for Player 1 is a function
a : Prefs(G) — D(X). A (deterministic or randomized) strategy a for Player 1
is observation-based if for all prefixes p, p’ € Prefs(G), if y~*(p) = v~ 1(p’), then
a(p) = a(p’). In the sequel, we are interested in the existence of observation-
based strategies for Player 1. A deterministic strategy in G for Player 2 is a
function 3 : Prefs(G) x X — L such that for all p € Prefs(G) and all o € X,
we have (Last(p), o, B(p,0)) € A. A randomized strategy in G for Player 2 is a
function 3 : Prefs(G) x X — D(L) such that for all p € Prefs(G), all 0 € X, and
all £ € Supp(B(p,c)), we have (Last(p),,f) € A. We denote by Ag, A9, and
Be the set of all Player-1 strategies, the set of all observation-based Player-1
strategies, and the set of all Player-2 strategies in G, respectively. All results of
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this paper can be proved also if strategies depend on state sequences only, and
not on the past moves of a play.

The outcome of two deterministic strategies o (for Player 1) and ( (for
Player 2) in G is the play m = foooly...0n—1non ... € Plays(G) such that
for all 4 > 0, we have o; = «(m(i)) and ;11 = B(w(i),0;). This play is denoted
outcome(G, a, 3). The outcome of two randomized strategies o (for Player 1) and
G (for Player 2) in G is the set of plays m = £yool1 ... 0n—1€no, ... € Plays(G)
such that for all ¢ > 0, we have a(n(7))(0;) > 0 and B(w(i),0;)(iy1) > 0. This
set is denoted outcome(G, «, 3). The outcome set of the deterministic (resp.
randomized) strategy « for Player 1 in G is the set Outcome;(G, «) of plays 7
such that there exists a deterministic (resp. randomized) strategy ( for Player 2
with © = outcome(G, «, 3) (resp. m € outcome(G, «, 8)). The outcome sets for
Player 2 are defined symmetrically.

Objectives. An objective for G is a set ¢ of infinite sequences of observations
and input letters, that is, ¢ C (O x X)¥. A play m = lyool1...0n—1lnoy ... €
Plays(G) satisfies the objective ¢, denoted 7 = ¢, if v~ 1(7) € ¢. Objectives
are generally Borel measurable: a Borel objective is a Borel set in the Cantor
topology on (O x X)“ [13]. We specifically consider reachability, safety, Biichi,
coBiichi, and parity objectives, all of them Borel measurable. The parity objec-
tives are a canonical form to express all w-regular objectives [20]. For a play
m = looply . .., we write Inf(m) for the set of observations that appear infinitely
often in y~1(7), that is, Inf(7) = {0 € O | ¢; € (o) for infinitely many i’s}.
Given a set 7 C O of target observations, the reachability objective Reach(7)
requires that an observation in 7 be visited at least once, that is, Reach(7) =
{ lyoolror... € Plays(G) | Ik > 0-Fo € T : £ € v(o) }. Dually, the safety
objective Safe(7) requires that only observations in 7 be visited. Formally,
Safe(7T) = { lyool101... € Plays(G) | VkE > 0-30 € T : £, € ~(o) }. The
Biichi objective Buchi(7") requires that an observation in 7 be visited infinitely
often, that is, Buchi(7) = { 7 | Inf(xw) N 7 # () }. Dually, the coBiichi objective
coBuchi(7) requires that only observations in 7 be visited infinitely often. For-
mally, coBuchi(7) = {7 | Inf(r) C7T }. Ford e N,let p: O — {0,1,...,d}
be a priority function, which maps each observation to a nonnegative integer
priority. The parity objective Parity(p) requires that the minimum priority that
appears infinitely often be even. Formally, Parity(p) = { 7 | min{ p(o) | o €
Inf() } is even }. Observe that by definition, for all objectives ¢, if 7 = ¢ and

1 (m) =77 (), then 7' | 6.

Sure winning and almost winning. A strategy \; for Player i in G is sure winning
for an objective ¢ if for all 7 € Outcome; (G, \;), we have 7 = ¢. Given a game
structure G and a state ¢ of G, we write G for the game structure that results
from G by changing the initial state to ¢, that is, if G = (L,ly, X, A, O,~),
then Gy = (L, ¢, X, A,O,v). An event is a measurable set of plays, and given
strategies o and [ for the two players, the probabilities of events are uniquely
defined [21]. For a Borel objective ¢, we denote by Pr?’ﬁ((b) the probability ¢ is
satisfied in the game Gy given the strategies a and (3. A strategy « for Player 1
in G is almost winning for the objective ¢ if for all randomized strategies (3 for
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Fig. 1. Game structure G

Player 2, we have Pr%’ﬁ(qﬁ) = 1. The set of sure-winning (resp. almost-winning)
states of a game structure G for the objective ¢ is the set of states £ such that
Player 1 has a deterministic sure-winning (resp. randomized almost-winning)
observation-based strategy in Gy for the objective ¢.

Theorem 1 (Determinacy). [16] For all perfect-information game structures
G and all Borel objectives ¢, either there exists a deterministic sure-winning
strategy for Player 1 for the objective ¢, or there exists a deterministic sure-
winning strategy for Player 2 for the complementary objective Plays(G) \ ¢.

Notice that deterministic strategies suffice for sure winning a game: given a ran-
domized strategy a for Player 1, let a” be the deterministic strategy such that
for all p € Prefs(G), the strategy a”(p) chooses an input letter from Supp(a(p)).
Then Outcome; (G, aP) C Outcome; (G, a), and thus, if « is sure winning, then
so is aP. The result also holds for observation-based strategies and for perfect-
information games. However, for almost winning, randomized strategies are more
powerful than deterministic strategies as shown by Example 1.

Example 1. Consider the game structure shown in Fig. 1. The observations
01, 02,03, 04 are such that y(o1) = {l1}, v(02) = {€2,45}, v(03) = {¢3,05}, and
~v(04) = {€4}. The transitions are shown as labeled edges in the figure, and the
initial state is ¢1. The objective of Player 1 is Reach({o4}), to reach state 4.
We argue that the game is not sure winning for Player 1. Let o be any deter-
ministic strategy for Player 1. Consider the deterministic strategy g for Player 2
as follows: for all p € Prefs(G) such that Last(p) € v(02), if a(p) = a, then in
the previous round [ chooses the state ¢5, and if a(p) = b, then in the previous
round [ chooses the state ¢5. Given « and f, the play outcome(G, a, ) never
reaches /4. However, the game G is almost winning for Player 1. Consider the
randomized strategy that plays a and b uniformly at random at all states. Every
time the game visits observation os, for any strategy for Player 2, the game visits
l3 and ¢4 with probability é, and hence also reaches ¢4 with probability é It
follows that against all Player 2 strategies the play eventually reaches ¢4 with
probability 1.
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Remarks. First, the hypothesis that the observations form a partition of the
state space can be weakened to a covering of the state space, where observations
can overlap. In that case, Player 2 chooses both the next state of the game /¢
and the next observation o such that ¢ € y(0). The definitions related to plays,
strategies, and objectives are adapted accordingly. Such a game structure G with
overlapping observations can be encoded by an equivalent game structure G’ of
imperfect information, whose state space is the set of pairs (¢,0) such that ¢ €
~(0). The set of labeled transitions A’ of G’ is defined by A" = {((¢, 0), 0, (¢,0")) |
(l,0,0') € A} and v'~1(¢,0) = 0. The games G and G’ are equivalent in the
sense that for every Borel objective ¢, there exists a sure (resp. almost) winning
strategy for Player ¢ in G for¢ if and only if there exists such a winning strategy
for Player ¢ in G’ for ¢. Second, it is essential that the objective is expressed
in terms of the observations. Indeed, the games of imperfect information with
a nonobservable winning condition are more complicated to solve. For instance,
the universality problem for Biichi automata can be reduced to such games, but
the construction that we propose in Section 3 cannot be used.

3 Sure Winning

We show that a game structure G of imperfect information can be encoded by
a game structure G¥ of perfect information such that for all Borel objectives ¢,
there exists a deterministic observation-based sure-winning strategy for Player 1
in G for ¢ if and only if there exists a deterministic sure-winning strategy for
Player 1 in GX for ¢. We obtain G¥ by a subset construction. Each state in GX is
a set of states of G which represents the knowledge of Player 1. In the worst case,
the size of GK is exponentially larger than the size of G. Second, we present a
fixed-point algorithm based on antichains of set of states [10], whose correctness
relies on the subset construction, but avoids the explicit construction of GK.

3.1 Subset Construction for Sure Winning

Given a game structure of imperfect information G = (L,ly, X, A, O, ), we
define the knowledge-based subset construction of G as the following game struc-
ture of perfect information: GK = (£,{lo}, X, AK), where £ = 2L\{0}, and
(s1,0,89) € AXiff there exists an observation o € O such that sy = PostS (s1) N
~v(0) and sa # 0. Notice that for all s € £ and all ¢ € X, there exists a set s’ € L
such that (s,0,s') € AK.

A (deterministic or randomized) strategy in GK is called a knowledge-based
strategy. For all sets s € £ that are reachable in GX, and all observations o €
O, either s C (o) or s N y(o) = . By an abuse of notation, we define the
observation sequence of a play m = $900S1...0n—15,0n ... € PIays(GK) as the
infinite sequence y~1(7) = 090001 . ..0p_10,0y, . .. of observations such that for
all i« > 0, we have s; C «y(0;); this sequence is unique. The play 7 satisfies an
objective ¢ C (O x X)* if y~1(w) € ¢. The proof of the following theorem can
be found in the technical-report version for this paper.
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Theorem 2 (Sure-winning reduction). Player 1 has a deterministic
observation-based sure-winning strategy in a game structure G of imperfect in-
formation for a Borel objective ¢ if and only if Player 1 has a deterministic
sure-winning strategy in the game structure G¥ of perfect information for ¢.

3.2 Two Interpretations of the pu-Calculus

Form the results of Section 3.1, we can solve a game G of imperfect information
with objective ¢ by constructing the knowledge-based subset construction G¥
and solving the resulting game of perfect information for the objective ¢ using
standard methods. For the important class of w-regular objectives, there exists
a fixed-point theory —the p-calculus— for this purpose [8]. When run on GX,
these fixed-point algorithms compute sets of sets of states of the game G. An
important property of those sets is that they are downward closed with respect
to set inclusion: if Player 1 has a deterministic strategy to win the game G when
her knowledge is a set s, then she also has a deterministic strategy to win the
game when her knowledge is s’ with s’ C s. And thus, if s is a sure-winning
state of GK, then so is s’. Based on this property, we devise a new algorithm for
solving games of perfect information.

An antichain of nonempty sets of states is a set ¢ C 2%\ () such that for all
8,8 € q, we have s ¢ s'. Let C be the set of antichains of nonempty subsets of
L, and consider the following partial order on C: for all ¢,¢' € C, let ¢ C ¢’ iff
Vs€q-3s' €q :5C s For q C2F\ 0, define the set of mazimal elements of
gby [ql ={s€q|s#0andVs € q:s ¢ s'}. Clearly, [¢] is an antichain.
The least upper bound of ¢,¢' € Cis qU ¢ = [{s|s € q or s € ¢'}], and their
greatest lower bound is ¢M ¢ = [{sNs' | s € gand s’ € ¢'}]. The definition of
these two operators extends naturally to sets of antichains, and the greatest
element of C is T = {L} and the least element is | = (. The partially ordered
set (C,C,U,M, T, 1) forms a complete lattice. We view antichains of state sets
as a symbolic representation of C-downward-closed sets of state sets.

A game lattice is a complete lattice V' together with a predecessor operator
CPre : V. — V. Given a game structure G = (L,ly, X, A, O, ) of imperfect
information, and its knowledge-based subset construction GX = (£, {lo}, X, AX),
we consider two game lattices: the lattice of subsets (S, C,U,N, L, D), where S =
2£ and CPre : S — S is defined by CPre(q) = {s € L | 3o € X -Vs' € L :

if (s,0,5') € AX, then s’ € ¢}; and the lattice of antichains (C,C, U, M, {L}, ),
with the operator [CPre] : C — C defined by [CPre](q) = [{s € L | Jo € X-Vo €
O -3s' € q: Post,(s) Ny(o) C s'}].

The p-calculus formulas are generated by the grammar

pu=olz|eVe|loAp]|pre(y) | pr.p | ve.p

for atomic propositions o € O and variables z. We can define —o as a shortcut
for \/q’EO\{o} o'. A variable is free in a formula ¢ if it is not in the scope of a
quantifier pux or vz. A formula ¢ is closed if it contains no free variable. Given
a game lattice V', a valuation & for the variables is a function that maps every
variable  to an element in V. For ¢ € V, we write £[z — ¢| for the valuation
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Lattice of subsets Lattice of antichains
[o]E={s € £ | s S (o)} [olé= {v(o)}
[¢]18= £ () [e]é= £ ()
e { % Joel2=lenlE {1} Le2)? ler{ X fealé=lelé {R} [l
[pre()IE= CPre([]2) [pre()I¢ = [CPre] (I])

{iheeli={{Hala=Iel8ma}t  [{L}ewlé={{Hala=lel0q}

that agrees with £ on all variables, except that = is mapped to ¢. Given a game
lattice V and a valuation &, each p-calculus formula ¢ specifies an element [¢]¥
of V', which is defined inductively by the equations shown in the two tables. If ¢
is a closed formula, then [p]" =[¢]¥ for any valuation €. The following theorem
recalls that perfect-information games can be solved by evaluating fixed-point

formulas in the lattice of subsets.

Theorem 3 (Symbolic solution of perfect-information games). [8] For
every w-regular objective ¢, there exists a closed p-calculus formula puForm(g),
called the characteristic formula of ¢, such that for all game structures G of
perfect information, the set of sure-winning states of G for ¢ is [uForm(#)]®.

Downward closure. Given a set ¢ € S, the downward closure of ¢ is the set
gl ={se€ L] 3¢ €q:sC s} Observe that in particular, for all ¢ € S, we
have ) & q| and [q]] = ql. The sets g, for ¢ € S, are the downward-closed sets.
A valuation £ for the variables in the lattice S of subsets is downward closed if
every variable x is mapped to a downward-closed set, that is, £(z) = £(z)].

Lemma 1. For all downward-closed sets q,q' € S, we have [qN ¢’ = [¢] M [q']
and [qU q'] = [q] U [q"].

Lemma 2. For all p-calculus formulas ¢ and all downward-closed valuations €
in the lattice of subsets, the set [¢]2 is downward closed.

Lemma 3. For all p-calculus formulas ¢, and all downward-closed valuations
& in the lattice of subsets, we have | [¢]2] :[go]]‘fg], where [E] is a valuation in

the lattice of antichains defined by [E](x) = [E(x)] for all variables x.

Consider a game structure G of imperfect information and a parity objective ¢.
From Theorems 2 and 3 and Lemma 3, we can decide the existence of a deter-
ministic observation-based sure-winning strategy for Player 1 in G for ¢ without
explicitly constructing the knowledge-based subset construction GX, by instead
evaluating a fixed-point formula in the lattice of antichains.

Theorem 4 (Symbolic solution of imperfect-information games). Let
G be a game structure of imperfect information with initial state ly. For every
w-regular objective ¢, Player 1 has a deterministic observation-based strategy in

G for ¢ if and only if {lo} C]uForm(¢)]°.
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Corollary 1. Let G be a game structure of imperfect information, let p be a
priority function, and let £ be a state of G. Whether £ is a sure-winning state in
G for the parity objective Parity(p) can be decided in EXPTIME.

Corollary 1 is proved as follows: for a parity objective ¢, an equivalent y-calculus
formula ¢ can be obtained, where the size and the fixed-point quantifier alter-
nations of ¢ is polynomial in ¢. Thus given G and ¢, we can evaluate ¢ in GK
in EXPTIME.

4 Almost Winning

Given a game structure G of imperfect information, we first construct a game
structure H of perfect information by a subset construction (different from the
one used for sure winning), and then establish certain equivalences between
randomized strategies in G and H. Finally, we show how the reduction can be
used to obtain a symbolic EXPTIME algorithm for computing almost-winning
states in G for Biichi objectives. An EXPTIME algorithm for almost winning for
coBiichi objectives under imperfect information remains unknown.

4.1 Subset Construction for Almost Winning

Given a game structure of imperfect information G = (L,lo, X, A, O, ), we
construct game structure of perfect information H = Pft(G) = (@, q0, X, An)
as follows: Q@ = { (s,£) | Jo € O : s C v(0) and £ € s }; the initial state is ¢o =
({lo},lo); the transition relation Ay C Q x X'x @ is defined by ((s, ¢), o, (s, ")) €
Ay iff there is an observation o € O such that s’ = PostS (s)Ny(0) and (¢, 0, ') €
A. Intuitively, when H is in state (s, £), it corresponds to G being in state £ and
the knowledge of Player 1 being s. Two states ¢ = (s,¢) and ¢’ = (¢',¢') of H
are equivalent, written q ~ ¢, if s = s’. Two prefixes p = qoooq1 . ..0n_1qn and
0o = q,o4d] - 0n_1q., of H are equivalent, written p = p, if for all 0 < i < n,
we have ¢; ~ ¢}, and for all 0 < ¢ < n — 1, we have 0; = o,. Two plays
m,n' € Plays(H) are equivalent, written my =~ 7f, if for all ¢ > 0, we have
7(i) = 7'(i). For a state ¢ € @, we denote by [g]~ = {¢ € Q| ¢ = ¢ } the
~-equivalence class of q. We define equivalence classes for prefixes and plays
similarly.
Equivalence-preserving strategies and objectives. A strategy « for Player 1 in
H is positional if it is independent of the prefix of plays and depends only on
the last state, that is, for all p, p’ € Prefs(H) with Last(p) = Last(p’), we have
a(p) = a(p’). A positional strategy « can be viewed as a function « : Q — D(X).
A strategy « for Player 1 in H is equivalence-preserving if for all p, o’ € Prefs(H)
with p & p/, we have a(p) = a(p’). We denote by Ag, AL, and A% the set of
all Player-1 strategies, the set of all positional Player-1 strategies, and the set
of all equivalence-preserving Player-1 strategies in H, respectively. We write
AZ(P) = A% N AL for the set of equivalence-preserving positional strategies.
An objective ¢ for H is a subset of (Q x X)¥, that is, the objective ¢ is a set
of plays. The objective ¢ is equivalence-preserving if for all plays 7 € ¢, we have

[ﬂ% Co.
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Relating prefizes and plays. We define a mapping h : Prefs(G) — Prefs(H) that
maps prefixes in G to prefixes in H as follows: given p = {yool1071 . ..0n—10n,
let h(p) = qoo0q101 - .. Tn—1¢n, where for all 0 < i < n, we have ¢; = (s, £;),
and for all 0 < i < n — 1, we have s; = K(y71(p(i))). The following properties
hold: (i) for all p,p’ € Prefs(G), if v~1(p) = v~1(p’), then h(p) ~ h(p’); and
(i7) for all p,p’ € Prefs(H), if p =~ p/, then v~ 1(h=1(p)) = v 1(h~1(p)). The
mapping h : Plays(G) — Plays(H) for plays is defined similarly, and has similar
properties.

Relating strategies for Player 1. We define two strategy mappings h : Ay — Ag
and g : Ag — Ag. Given a Player-1 strategy ay in H, we construct a Player-1
strategy ag = h(ay) in G as follows: for all p € Prefs(G), let ag(p) = ang(h(p)).
Similarly, given a Player-1 strategy ag in G, we construct a Player-1 strategy
ag = g(ag) in H as follows: for all p € Prefs(H), let ay(p) = ag(h™1(p)). The
following properties hold: (i) for all strategies ag € Ay, if ay is equivalence-
preserving, then h(ag) is observation-based; and (ii) for all strategies ag € Ag,
if g is observation-based, then g(a¢) is equivalence-preserving.

Relating strategies for Player 2. Observe that for all ¢ € @, all ¢ € X, and
all ¢ € L, we have [{ ¢ = (s,0) | (¢,0,¢') € Ay }| < 1. Given a Player-2
strategy Sm in H, we construct a Player-2 strategy 8¢ = h(8y) as follows: for
all p € Prefs(G), all 0 € X, and all ¢ € L, let Bg(p,0)(l) = Bu(h(p),o)(s,¥),
where (s, £) € Post? (Last(h(p))). Similarly, given a Player-2 strategy ¢ in G, we
construct a Player-2 strategy 8y = g(8¢) in H as follows: for all p € Prefs(H),
all 0 € ¥, and all ¢ € Q with g = (s,£), let Bu(p,)(q) = Ba(h™(p), o) (¥).

Lemma 4. For all p € Prefs(H), for every equivalence-preserving strategy o
of Player 1 in H, and for every strategy B of Player 2 in H, we have Prg‘o”g

(Cone(p)) = Pry,\ ™" (=" (Cone(p)).

Lemma 5. For all p € Prefs(G), for every observational strategy o of Player 1
in G, and for every strateqy 8 of Player 2 in G, we have Prfg”g(Cone(p)) =

Prd(®)-9) (n(Cone(p))).

Theorem 5 (Almost-winning reduction). Let G be a game structure of im-
perfect information, and let H = Pft(G) be the game structure of perfect infor-
mation. For all Borel objectives ¢ for G, all observation-based Player-1 strategies
o in G, and all Player-2 strategies 3 in G, we have Pri‘)’ﬁ(@ = Prgéa)’g(ﬁ)(h(@).
Dually, for all equivalence-preserving Borel objectives ¢ for H, all equivalence-
preserving Player-1 strategies a in H, and all Player-2 strategies 8 in H, we
have Pra:(¢) = P "D (=1 (¢)).

The proof is as follows: by the Caratheédary unique-extension theorem, a prob-
ability measure defined on cones has a unique extension to all Borel objectives.
The theorem then follows from Lemma 4.

Corollary 2. For every Borel objective ¢ for G, we have 3ag € AZ -VBg €
Be : Pr?oc’ﬁc(@ =1 if and only if Jay € A% - VB € By : Prf;OH’BH (h(9)) = 1.
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4.2 Almost Winning for Biichi Objectives

Given a game structure G of imperfect information, let H = Pft(G) be the game
structure of perfect information. Given a set 7 C O of target observations, let
Br ={(s,1) Q| 30€T :sC~(0)}. Then h(Buchi(T)) = Buchi(Br) = {ny €
Plays(H) | Inf(mg) N By # 0 }. We first show that almost winning in H for the
Biichi objective Buchi(B7) with respect to equivalence-preserving strategies is
equivalent to almost winning with respect to equivalence-preserving positional
strategies. Formally, for By C Q,let Qs ={q¢ € Q |3ac A} -VB € By -V¢ €
[d~ : Pr%?(Buchi(Br)) = 1}, and Q5" = {q e Q| 3a € 47" w5 €

By -Yq € [ql~ : Prg‘,’ﬁ(Buchi(BT)) = 1}. We will prove that Q%s = Q:SEP).
Lemma 6 follows from the construction of H from G.

Lemma 6. Given an equivalence-preserving Player-1 strategy o € Ap, a prefix
p € Prefs(H), and a state ¢ € Q, if there exists a Player-2 strategy 0 € By
such that Prg‘”g(Cone(p)) > 0, then for every prefiz p' € Prefs(H) with p =
p', there exist a Player-2 strategy ' € By and a state ¢ € [q]~ such that

P12 (Cone(p')) > 0.

Observe that Q \ Qas = {¢ € Q | Ya € A% - 38 € By -3¢ € [¢l~ :
Pr?,’B(Buchi(BT)) < 1}. It follows from Lemma 6 that if a play starts in Qxg
and reaches @\ Qs with positive probability, then for all equivalence-preserving
strategies for Player 1, there is a Player 2 strategy that ensures that the Biichi
objective Buchi(Br) is not satisfied with probability 1.

Notation. For a state ¢ € Q and Y C @, let Allow(q,Y) = {0 € X | Postf(q) C

Y }. For astate ¢ € Q and Y C Q, let Allow([q]~,Y) = ﬂq'e[q]z Allow(q’,Y).

Lemma 7. For all g € Q7xs, we have Allow([q]~, Qxs) # 0.

Lemma 8. Given a state ¢ € QRs, let a € Ag be an equivalence-preserving
Player-1 strategy such that for all Player-2 strategies B € By and all states
q € [g]~, we have Pr?,’B(Buchi(BT)) =1. Let p = qoooq1 - .. 0n_1Gn be a prefic
in Prefs(H) such that for all 0 < i < n, we have q; € Qxs. If there is a Player-
2 strategy B € By and a state ¢ € [q]~ such that Prg‘,’ﬁ(Cone(p)) > 0, then
Supp(a(p)) € Allow([g]~, @xs)-

Notation. We inductively define the ranks of states in Qg as follows: let Rank(0)
= Br NQ7%s, and for all j > 0, let Rank(j + 1) = Rank(j) U{ ¢ € QX | Jo €
Allow([q]~, Q%) : Postt(g) C Rank(j) }. Let j* = min{ j > 0 | Rank(j) =
Rank(j 4+ 1) }, and let @* = Rank(j*). We say that the set Rank(j + 1) \ Rank(j)
contains the states of rank j + 1, for all j > 0.

Lemma 9. Q* = Q7s.

Equivalence-preserving positional strategy. Consider the equivalence-preserving
positional strategy o for Player 1 in H, which is defined as follows: for a state
q € Qrs, choose all moves in Allow([¢]=, QRs) uniformly at random.
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Lemma 10. For all states g € Q7 and all Player-2 strategies 3 in H, we have
Pro" " (Safe(Q7)) = 1 and Pr&”?(Reach(Br N Q%)) = 1.

Proof. By Lemma 9, we have Q* = Qxs. Let z = |Q*|. For a state ¢ € QRs,
we have Post}/ (¢) C Q7% for all o € Allow([q]~, Qxs)- Tt follows for all states
q € Qs and all strategies 3 for Player 2, we have Prg‘p’ﬁ(Safe(Qfs)) =1.

For a state ¢ € (Rank(j +1) \ Rank(j)), there exists o € Allow([¢]~, Qxs) such
that Post’ (¢) C Rank(j). For a set Y C Q, let ¢7(Y) denote the set of prefixes
that reach Y within j steps. It follows that for all states q € Rank(j +1) and all
strategies [ for Player 2, we have Pro‘p’ﬂ(ol(Rank( 1)) > |2| Let B = BrNQ7%s-
By induction on the ranks it follows that for all states ¢ € @* and all strategies

3 for Player 2: Pre”#(0*(Rank(0))) = P #(0*(B)) > (m) = r > 0. For
m > 0, we have Pr&"#(0™*(B)) > 1 — (1 — r)™. Thus:

Pro"f(Reach(B)) = lim Pry "B *(B)) > Jim 1-(1-r)" =1 ]
Lemma 10 implies that, given the Player-1 strategy o, the set Q% is never left,
and the states in By N Q7% are reached with probability 1. Since this happens
for every state in Q7s, it follows that the set By N QX5 is visited infinitely
often with probability 1, that is, the Biichi objective Buchi(Byr) is satisfied with
probability 1. This analysis, together with the fact that [go]~ is a singleton and

Corollary 2, proves that Qxs = Q:S(P). Theorem 6 follows.

Theorem 6 (Positional almost winning for Biichi objectives under im-
perfect information). Let G be a game structure of imperfect information,
and let H = Pft(G) be the game structure of perfect information. For all sets
T of observations, there exists an observation-based almost-winning strategy for
Player 1 in G for the objective Buchi(7T) iff there exists an equivalence-preserving
positional almost-winning strategy for Player 1 in H for the objective Buchi(Br).

Symbolic algorithm. We present a symbolic quadratic-time (in the size of H) algo-
rithm to compute the set Qxs. For Y C Q and X C Y, let Apre(Y, X) = {qe Y|
Jo € Allow([g]~,Y) : Post? (q) € X } and Spre(Y) = { g € Y | Allow([¢]~,Y) #
0 }. Note that Spre(Y) = Apre(Y,Y). Let ¢ = vY.uX.(Apre(Y,X) V (Br A
Spre(Y)) and let Z =[¢]. It can be shown that Z = Q7.

Theorem 7 (Complexity of almost winning for Biichi objectives under
imperfect information). Let G be a game structure of imperfect information,
let T be a set of observations, and let ¢ be a state of G. Whether £ is an almost-
winning state in G for the Biichi objective Buchi(T) can be decided in EXPTIME.

The facts that Z = Q%5 and that H is exponential in the size of G yield Theo-
rem 7. The arguments for the proofs of Theorem 6 and 7 do not directly extend
to coBiichi or parity objectives. In fact, Theorem 6 does not hold for parity
objectives in general, for the following reason: in concurrent games with parity
objectives with more than two priorities, almost-winning strategies may require
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infinite memory; for an example, see [5]. Such concurrent games are reducible
to semiperfect-information games [4], and semiperfect-information games are re-
ducible to the imperfect-information games we study. Hence a reduction to finite
game structures of perfect information in order to obtain randomized positional
strategies is not possible with respect to almost winning for general parity ob-
jectives. Theorem 6 and Theorem 7 may hold for coBiichi objectives, but there
does not seem to be a simple extension of our arguments for Biichi objectives to
the coBiichi case. The results that correspond to Theorems 6 and 7 for coBlichi
objectives are open.

Direct symbolic algorithm. As in Section 3.2, the subset structure H does not have
to be constructed explicitly. Instead, we can evaluate a fixed-point formula on a
well-chosen lattice. The fixed-point formula to compute the set Q75 is evaluated
on the lattice (22, C,U,N, Q,0). It is easy to show that the sets computed by
the fixed-point algorithm are downward closed for the following order on Q:
for (s,0),(s',0') € Q, let (s,0) < (s',¢") iff £ = ¢ and s C s’. Then, we can
define an antichain over @) as a set of pairwise <-incomparable elements of @,
and compute the almost-sure winning states in the lattice of antichains over @,
without explicitly constructing the exponential game structure H.

5 Lower Bounds

We show that deciding the existence of a deterministic (resp. randomized) obser-
vation-based sure-winning (resp. almost-winning) strategy for Player 1 in games
of imperfect information is EXPTIME-hard already for reachability objectives.
The result for sure winning follows from [19], but our new proof extends to
almost winning as well.

Sure winning. To show the lower bound, we use a reduction from the member-
ship problem for polynomial-space alternating Turing machines. An alternating
Turing machine (ATM) is a tuple M = (Q, qo, g, X%, X+, 6, F'), where @Q is a finite
set of control states; ¢ € @ is the initial state; g : Q — {A,V}; X; = {0,1} is the
input alphabet; X, = {0,1,2} is the tape alphabet and 2 is the blank symbol;
6§ C Q%X xQx X x{—1,1} is the transition relation; and F C @ is the set
of accepting states. We say that M is a polynomial-space ATM if there exists a
polynomial p(-) such that for every word w, the tape space used by M on input
w is bounded by p(|w|). Without loss of generality, we assume that the initial
control state of the machine is a V-state, and that transitions connect V-states
to A-states, and vice versa. A word w is accepted by the ATM M if there exists
a run tree of M on w all of whose leaf nodes are accepting configurations (i.e.,
configurations containing an accepting state); see [3] for details. The membership
problem is to decide if a given word w is accepted by a given polynomial-space
ATM (M, p). This problem is EXPTIME-hard [3].

Sketch of the reduction. Given a polynomial-space ATM M and a word w, we
construct a game structure of imperfect information, of size polynomial in the
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size of (M, w), to simulate the execution of M on w. Player 1 makes choices in
V-states, and Player 2 makes choices in A-states. Player 1 is responsible for main-
taining the symbol under the tape head. His objective is to reach an accepting
configuration of the ATM.

Each turn proceeds as follows. In an V-state, by choosing a letter (¢,a) in
the alphabet of the game, Player 1 reveals (i) the transition ¢ of the ATM that
he has chosen (this way he also reveals the symbol that is currently under the
tape head), and (i4) the symbol a under the next position of the tape head. If
Player 1 lies about the current or the next symbol under the tape head, then he
should lose the game; otherwise the game proceeds. The machine is now in an A-
state and Player 1 has no choice: he announces a special symbol € and Player 2,
by resolving the nondeterminism on ¢, chooses a transition of the ATM that is
compatible with the current symbol under the tape head revealed by Player 1
at the previous turn. The state of the ATM is updated and the game proceeds.
The transition chosen by Player 2 is visible in the next state of the game, and
thus Player 1 can update his knowledge about the configuration of the ATM.
Player 1 wins whenever an accepting configuration of the ATM is reached.

The difficulty is to ensure that Player 1 loses when he announces a wrong
symbol under the tape head. As the number of configurations of the polynomial-
space ATM is exponential, we cannot directly encode the full configuration of
the ATM in the states of the game. To overcome this difficulty, we use the
power of imperfect information as follows. Initially, Player 2 chooses a position
k, where 1 < k < p(Jw|), on the tape. The chosen number k, as well as the
symbol o € {0, 1,2} that lies in the tape cell with number k, are maintained all
along the game in the nonobservable portion of the game states. The pair (o, k)
is thus private to Player 2, and invisible to Player 1. Thus, at any point in the
game, Player 2 can check whether Player 1 is lying when announcing the content
of cell number k, and go to a sink state if Player 1 cheats (no other states can
be reached from there). Since Player 1 does not know which cell is monitored by
Player 2 (since k is private), to avoid losing, he must not lie about any of the
tape cells, and thus he must faithfully simulate the machine. Then, he wins the
game if and only if the ATM accepts the words w.

Almost winning. To establish the lower bound for almost winning, we can use
the same reduction. Randomization cannot help Player 1 in this game. Indeed,
at any point in the game, if Player 1 takes a chance in either not faithfully
simulating the ATM or lying about the symbol under the tape head, then the
sink state is reached. In these cases, the probability to reach the sink state is
positive, and so the probability to win the game is strictly less than one.

Theorem 8 (Lower bounds). Let G be a game structure of imperfect informa-
tion, let T be a set of observations, and let £ be a state of G. Deciding whether £
is a sure-winning state in G for the reachability objective Reach(7') is EXPTIME-
hard. Deciding whether £ is an almost-winning state in G for Reach(7) is also
EXPTIME-hard.
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Relating Two Standard Notions of Secrecy™

Véronique Cortier, Michaél Rusinowitch, and Eugen Zalinescu

Loria, UMR 7503 & INRIA Lorraine projet Cassis & CNRS, France

Abstract. Two styles of definitions are usually considered to express
that a security protocol preserves the confidentiality of a data s.
Reachability-based secrecy means that s should never be disclosed while
equivalence-based secrecy states that two executions of a protocol with
distinct instances for s should be indistinguishable to an attacker. Al-
though the second formulation ensures a higher level of security and is
closer to cryptographic notions of secrecy, decidability results and auto-
matic tools have mainly focused on the first definition so far.

This paper initiates a systematic investigation of situations where
syntactic secrecy entails strong secrecy. We show that in the passive
case, reachability-based secrecy actually implies equivalence-based se-
crecy for signatures, symmetric and asymmetric encryption provided that
the primitives are probabilistic. For active adversaries in the case of sym-
metric encryption, we provide sufficient (and rather tight) conditions on
the protocol for this implication to hold.

1 Introduction

Cryptographic protocols are small programs designed to ensure secure commu-
nications. Since they are widely distributed in critical systems, their security
is primordial. In particular, verification using formal methods attracted a lot of
attention during this last decade. A first difficulty is to formally express the secu-
rity properties that are expected. Even a basic property such as confidentiality
admits two different acceptable definitions namely reachability-based (syntac-
tic ) secrecy and equivalence-based (strong) secrecy. Syntactic secrecy is quite
appealing: it says that the secret is never accessible to the adversary. For exam-
ple, consider the following protocol where the agent A simply sends a secret s
to an agent B, encrypted with B’s public key.

A— B: {s}pub(B)

An intruder cannot deduce s, thus s is syntactically secret. Although this no-
tion of secrecy may be sufficient in many scenarios, in others, stronger security
requirements are desirable. For instance consider a setting where s is a vote and
B behaves differently depending on its value. If the actions of B are observ-
able, s remains syntactically secret but an attacker can learn the values of the

* This work has been partially supported by the ACI-SI Satin and the ACI Jeunes
Chercheurs JC9005.

Z. Esik (Ed.): CSL 2006, LNCS 4207, pp. 303-318, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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vote by watching B’s actions. The design of equivalence-based secrecy is tar-
geted at such scenarios and intuitively says that an adversary cannot observe
the difference when the value of the secret changes. This definition is essential to
express properties like confidentiality of a vote, of a password, or the anonymity
of participants to a protocol.

Although the second formulation ensures a higher level of security and is closer
to cryptographic notions of secrecy, so far decidability results and automatic
tools have mainly focused on the first definition. The syntactic secrecy preserva-
tion problem is undecidable in general [13], it is co-NP-complete for a bounded
number of sessions [17], and several decidable classes have been identified in
the case of an unbounded number of sessions [13,10,7,16]. These results often
come with automated tools, we mention for example ProVerif [5], CAPSL [12],
and Avispa [4]. To the best of our knowledge, the only tool capable of verifying
strong secrecy is the resolution-based algorithm of ProVerif [6] and only one de-
cidability result is available: Hiittel [14] proves decidability for a fragment of the
spi-calculus without recursion for framed bisimilarity, a related equivalence re-
lation introduced by Abadi and Gordon [2]. Also in [8], Borgstrom et al propose
an incomplete decision procedure based on a symbolic bisimulation.

In light of the above discussion, it may seem that the two notions of secrecy are
separated by a sizable gap from both a conceptual point of view and a practical
point of view. These two notions have counterparts in the cryptographic setting
(where messages are bitstrings and the adversary is any polynomial probabilis-
tic Turing machine). Intuitively, the syntactic secrecy notion can be translated
into a similar reachability-based secrecy notion and the equivalence-based no-
tion is close to indistinguishability. A quite surprising result [11] states that
cryptographic syntactic secrecy actually implies indistinguishability in the cryp-
tographic setting. This result relies in particular on the fact that the encryption
schemes are probabilistic thus two encryptions of the same plaintext lead to
different ciphertexts.

Motivated by the result of [11] and the large number of available systems for
syntactic secrecy verification, we initiate in this paper a systematic investigation
of situations where syntactic secrecy entails strong secrecy. Surprisingly, this
happens in many interesting cases.

We offer results in both passive and active cases in the setting of the applied
pi caleulus [1]. We first treat in Section 2 the case of passive adversaries. We
prove that syntactic secrecy is equivalent to strong secrecy. This holds for sig-
natures, symmetric and asymmetric encryption. It can be easily seen that the
two notions of secrecy are not equivalent in the case of deterministic encryption.
Indeed, the secret s cannot be deduced from the encrypted message {s}oup(B)
but if the encryption is deterministic, an intruder may try different values for
s and check whether the ciphertext he obtained using B’s public key is equal
to the one he receives. Thus for our result to hold, we require that encryp-
tion is probabilistic. This is not a restriction since this is de facto the standard
in almost all cryptographic applications. Next, we consider the more challeng-
ing case of active adversaries. We give sufficient conditions on the protocols for
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syntactic secrecy to imply strong secrecy (Section 3). Intuitively, we require that
the conditional tests are not performed directly on the secret since we have seen
above that such tests provide information on the value of this secret. We again
exhibit several counter-examples to motivate the introduction of our conditions.
An important aspect of our result is that we do not make any assumption on
the number of sessions: we put no restriction on the use of replication.

The interest of our contribution is twofold. First, conceptually, it helps to
understand when the two definitions of secrecy are actually equivalent. Second,
we can transfer many existing results (and the armada of automatic tools) de-
veloped for syntactic secrecy. For instance, since the syntactic secrecy problem
is decidable for tagged protocols for an unbounded number of sessions [16], by
translating the tagging assumption to the applied-pi calculus, we can derive a
first decidability result for strong secrecy for an unbounded number of sessions.
Other decidable fragments might be derived from [13] for bounded messages
(and nonces) and [3] for a bounded number of sessions.

2 Passive Case

Cryptographic primitives are represented by functional symbols. More specifi-
cally, we consider the signature X~ = {enc, dec, enca, deca, pub, priv, (), 71, 72,
sign, check, retrieve}. T (X, X, N), or simply 7, denotes the set of terms built
over X extended by a set of constants, the infinite set of names N and the in-
finite set of variables X. A term is closed or ground if it does not contain any
variable. The set of names occurring in a term T is denoted by fn(7'), the set of
variables is denoted by V(T'). The positions in a term T are defined recursively
as usual (i.e. as sequences of positive integers), € being the empty sequence. De-
note by N* the set of sequences of positive integers. Pos(T") denotes the set of
positions of T' and Pos, (T) the set of positions of variables in T'. We denote by
T, the subterm of T at position p and by U[V], the term obtained by replacing
in U the subterm at position p by V. We may simply say that a term V is in a
term U if V' is a subterm of U. We denote by < (resp.<s:) the subterm (resp.
strict) order. hy denotes the function symbol, name or variable at position € in
the term U.
We equip the signature with an equational theory E:

m1({21,22)) = 21 deca(enca(z1, pub(22), 23), priv(22)) = 21
T ((21, 22)) = 22 check(z1, sign(21, priv(z2)), pub(z2)) = ok
dec(enc(z1, 22, 23), 22) = 21 retrieve(sign(z1, 22)) = 21

The function symbols 71, 72, dec, deca, check and retrieve are called destructors.
Let R g be the corresponding rewrite system (obtained by orienting the equations
from left to right). Rg is convergent. The normal form of a term T" w.r.t. R is
denoted by T'|. Notice that E is also stable by substitution of names. As usual,
we write U — V if there exists 6, a position p in U and L — R € Rg such that
Ulp = L6 and V = U[R0)],.
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The symbol ( , ) represents the pairing function and m; and 7 are the asso-
ciated projection functions. The term enc(M, K, R) represents the message M
encrypted with the key K. The third argument R reflects that the encryption
is probabilistic: two encryptions of the same messages under the same keys are
different. The symbol dec stands for decryption. The symbols enca and deca are
very similar but in an asymmetric setting, where pub(a) and priv(a) represent
respectively the public and private keys of an agent a. The term sign(M, K)
represents the signature of message M with key K. check enables to verify the
signature and retrieve enables to retrieve the signed message from the signature.’

After the execution of a protocol, an attacker knows the messages sent on
the network and also in which order they were sent. Such message sequences are
organized as frames ¢ = vn.o, where o = {My, ... M/ 1 is a ground acyclic
substitution and 7 is a finite set of names. We denote by dom(p) = dom(o) =
{y1,.-.,y1}. The variables y; enable us to refer to each message. The names in
n are said to be restricted in . Intuitively, these names are a priori unknown
to the intruder. The names outside n are said to be free in . A term M is said
public w.r.t. a frame vn.o (or w.r.t. a set of names n) if fn(M) N7 = 0. The set
of restricted names 7 might be omitted when it is clear from the context. We
usually write vnq,...,ny instead of v{ny,...,ng}.

2.1 Deducibility

Given a frame ¢ that represents the history of messages sent during the execution
of a protocol, we define the deduction relation, denoted by ¢ F M. Deducible
messages are messages that can be obtained from ¢ by applying functional sym-
bols and the equational theory FE.

vn.o - xo z € dom(o) vn.obEm m € M\
vnobETy -+ vnotbT vnotT T=gT
vin.o - f(Th,...,T)) vn.o =T’

Ezample 1. k and (k, k') are deducible from the frame vk, k', r.{nc(Kr)y k7 A

A message is usually said secret if it is not deducible. By opposition to our next
notion of secrecy, we say that a term M is syntactically secret in ¢ if p ¥ M.

2.2 Static Equivalence

Deducibility does not always suffice to express the abilities of an intruder.

Ezample 2. The set of deducible messages is the same for the frames ¢; =
Vk7n17n27T1~

! Signature schemes may disclose partial information on the signed message. To enforce
the intruder capabilities, we assume that messages can always be retrieved out of
the signature.
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{enc(nl,k,rl)/x’<n1,n2)/y7k/z} and Qg = Vk.’nl7n27rl.{enc(n2,k,r2)/z’ (nl,nrz}/y7 lc/z}7 while
an attacker is able to detect that the first message corresponds to distinct nonces.
In particular, the attacker is able to distinguish the two “worlds” represented by
1 and ps.

We say that a frame ¢ = vn.o passes the test (U, V) where U,V are two terms,
denoted by (U = V), if there exists a renaming of the restricted names in ¢
such that (fn(U) Um(V))Nn =0 and Uo =g Vo. Two frames ¢ = vn.o and
¢’ =vm.o’ are statically equivalent, written ¢ ~ ', if they pass the same tests,
that is dom(p) = dom(¢’) and for all terms U,V such that (V(U) U V(V)) C
dom(y) and (fu(U) Un(V)) N (mUm) =0, we have (U = V)p iff (U =V)y'.

Ezxample 3. The frames ¢1 and ys defined in Example 2 are not statically equiv-
alent since (dec(z, z) = m1(y))p1 but (dec(z, z) # m1(y))pe.

Let s be a free name of a frame ¢ = vn.o. We say that s is strongly secret in ¢ if
for every closed public terms M, M’ w.r.t. ¢, we have o(M/4) ~ p(M/,) that is,
the intruder cannot distinguish the frames obtained by instantiating the secret s
by two terms of its choice. For simplicity we may omit s and write ¢ (M) instead
of 9(M,).

Of course an intended syntactical secret name s must be restricted, but when
talking about instances of s we must consider it (at least) a free name (if not a
variable). Hence we compare syntactic secrecy and strong secrecy regarding the
same frame modulo the restriction on the secret s. We use the notation vs.p for
v(nU{s}).o, where ¢ = vn.c. Thus s is syntactically secret if vs.p ¥ s.

2.3 Syntactic Secrecy Implies Strong Secrecy

Syntactic secrecy is usually weaker than strong secrecy! We first exhibit some
examples of frames that preserves syntactic secrecy but not strong secrecy. They
all rely on different properties.

Probabilistic encryption. The frame ¢, = vk, r.{e"c(s:Fr)  enc(ukry 1 does
not preserve the strong secrecy of s. Indeed, ¥1(n) # ¥1(n’) since (x = y)y1(n)
but (z # y)i1(n’). This would not happen if each encryption used a distinct
randomness, that is, if the encryption was probabilistic.

Key position. The frame 5 = z/n.{enc“”’”/%s’”/w} does not preserve the strong
secrecy of s. Indeed, wo(k) % 1o(k') since (ma(dec(z,k)) = n')iha(k) but
(mo(dec(x, k)) # n') o (k). If s occurs in key position in some ciphertext, the
intruder may try to decrypt the ciphertext since s is replaced by public terms
and check for some redundancy. It may occur that the encrypted message does
not contain any verifiable part. In that case, the frame may preserve strong se-
crecy. It is for example the case for the frame vn.{*"“(™*7) 1 Such cases are
however quite rare in practice.

No destructors. The frame ¥3 = {™1(s),} does not preserve the strong secrecy
of s simply because (x = k) is true for 3((k, ¥')) while not for t3(k).
Retrieve rule. The retrieve(sign(z1, 22)) = z1 may seem arbitrary since not all
signature schemes enable to get the signed message out of a signature. It is ac-
tually crucial for our result. For example, the frame 1, = {sign(s:Piv(a)) p“b(“)/y}
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does not preserve the strong secrecy of s because (check(n,z,y) = ok) is true
for 14(n) but not for 14 (n’).

In these four cases, the frames preserve the syntactic secrecy of s, that is
vsap; t/ s, for 1 <4 < 4. This leads us to the following definition.

Definition 1. A frame ¢ = vn.o is well-formed w.r.t. some name s if

1. Encryption is probabilistic, i.e. for any subterm enc(M, K, R) of ¢, for any
term T € ¢ and position p such that T|, = R we have p = ¢.3 for some
g and T|q; = enc(M, K, R). In addition, if s occurs in M at a position p’
such that no encryption appears along the path from the root to p’ then R
must be restricted, that is R € n. The same conditions hold for asymmetric
encryption. and

2. s is not part of a key, i.e. for all enc(M, K, R), enca(M', K’', R), sign(U, V),
pub(W), priv(W') subterms of ¢, s ¢ (K, K, V,W,W' R, R').

3. @ does not contain destructor symbols.

Condition 1 requires that each innermost encryption above s contains a restricted
randomness. This is not a restriction since s is meant to be a secret value and such
encryptions have to be produced by honest agents and thus contain a restricted
randomness.

For well-formed frames, syntactic secrecy is actually equivalent to strong
secrecy

Theorem 1. Let p be a well-formed frame w.r.t. s, where s is a free name in .

’

vs.p¥ s if and only if o(Ms) = p(M/,)
for all M, M’ closed public terms w.r.t. ©.

Proof. We present the skeleton of the proof; all details can be found in a technical
report [18]. Let ¢ = vn.o be a well-formed frame w.r.t. s. If vs.p b s, this
trivially implies that s is not strongly secret. Indeed, there exists a public term
T w.r.t. ¢ such that To =g s (this can be easily shown by induction on the
deduction system). Let ni,no be fresh names such that ni,ns ¢ 17 and nq,ne ¢
fu(p). Since To("Ys) =g ny the frames ¢("Ys) and ¢("¥s) are distinguishable
with the test (T = nq).

We assume now that vs.p ¥ s. We first show that any syntactic equality
satisfied by the frame ¢(/,) is already satisfied by .

Lemma 1. Let ¢ = vn.o be a well-formed frame w.r.t. a free name s, U,V
terms such that V(U),V(V) C dom(p) and M a closed term, U, V and M
public w.r.t. n. Ifvs.p¥ s then Uoc(M/s) = Vo (M) implies Uo = Vo. Let T be
a subterm of a term in o that does not contain s. If vs.o ¥ s then T = Vo (M)
implies T =Vo.

The key lemma is that any reduction that applies to a deducible term U where
s is replaced by some M, directly applies to U.
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Lemma 2. Let o = vn.o be a well-formed frame w.r.t. a free name s such that
vs.p ¥ s. Let U be a term with V(U) C dom(yp) and M be a closed term in
normal form, U and M public w.r.t. n. If Uc(M/s) — V, for some term V', then
there exists a well-formed frame ¢ = vn.oc’ w.r.t. s

— extending ¢, that is xo' = xzo for all x € dom(o),
— preserving deducible terms: vs.o =W iff vs.p' E W,
— and such that V. =V'o' (M) and Us — V'a’ for some V' public w.r.t. .

This lemma allows us to conclude the proof of Theorem 1. Fix arbitrarily two
public closed terms M, M’. We can assume w.l.o.g. that M and M’ are in nor-
mal form. Let U # V be two public terms such that V(U),V(V) C dom(p)
and Uo(M/) =g Vo(M/,). Then there are Uy, ..., Uy and Vi,...,V; such that
UoM) - U — ... 5 U, VoM) - Vi — ... = WV, Uy, = Us(M,) |,
Vi=Vao™,)| and Uy = V.

Applying repeatedly Lemma 2 we obtain that there exist public terms U7, .. .,
Uj and V{,...,V/ and well-formed frames % = vn.c%, for i € {1,...,k} and
% = vn.o%, for j € {1,...,1} (as in the lemma) such that U; = U/o% (M),
Ujo" — Uj o+, Vi = Vo' (M) and Vo — V], 0%+t

We consider ¢/ = vn.o’ where ¢/ = g%+ U ¢"t. Since only subterms of ¢ have
been added to ¢’, it is easy to verify that ¢ is still a well-formed frame and for
every term W, vs.o = W iff vs.¢' - W. In particular vs.¢' ¥ s.

By construction we have that Ujo"*(™/5)=V/c" (M/5). Then, by Lemma 1,
we deduce that Ujo"* = V/o" that is Uc =g Vo. By stability of substitution

’

of names, we have Uo(M/s) =g Vo(M/,). We deduce that o(M/) ~ p(M7,).

3 Active Case

To simplify the analysis of the active case, we restrict our attention to pairing and
symmetric encryption: the alphabet X is now reduced to X' = {enc, dec, (), 71,72}
and F is limited to the first three equations.

3.1 Modeling Protocols Within the Applied Pi Calculus

The applied pi calculus [1] is a process algebra well-suited for modeling crypto-
graphic protocols, generalizing the spi-calculus [2]. We briefly describe its syntax
and semantics. This part is mostly borrowed from [1].

Processes, also called plain processes, are defined by the grammar:

P,Q := processes
0

null process vn.P name restriction
PlQ parallel composition u(z).P  message input
P replication u{M).P message output

if M = N then P else () conditional

where n is a name, U, V are terms, and u is a name or a variable. The null process
0 does nothing. Parallel composition executes the two processes concurrently.
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Replication ! P creates unboundedly new instances of P. Name restriction vn.P
builds a new, private name n, binds it in P and then executes P. The conditional
if M = N then P else @ behaves like P or @ depending on the result of the test
M = N.If @ is the null process then we use the notation [M = N].P instead.
Finally, the process u(z).P inputs a message and executes P binding the variable
2z to the received message, while the process u(M).P outputs the message M and
then behaves like P. We may omit P if it is 0. In what follows, we restrict our
attention to the case where u is a name since it is usually sufficient to model
cryptographic protocols.

Ezxtended processes are defined by the grammar:

A, B := extended processes
P plain process vn.A  name restriction
A | B parallel composition vx.A variable restriction

{M .} active substitution

Active substitutions generalize let, in the sense that va.({*/,}|P) corresponds to
let z = M in P, while unrestricted, {*/,} behaves like a permanent knowledge,
permitting to refer globally to M by means of x. We identify variable substi-
tutions {MV, ..., M/} 1 > 0 with extended processes {MV/,, }...[{*/,,}. In
particular the empty substitution is identified with the null process.

We denote by fv(A), bv(A), fn(A), and bn(A) the sets of free and bound
variables and free and bound names of A, respectively, defined inductively as
usual for the pi calculus’ constructs and using fv({/,}) = fv(M) U {z} and
m({M,}) = fn(M) for active substitutions. An extended process is closed if it
has no free variables except those in the domain of active substitutions.

Extended processes built up from the null process (using the given construc-
tions, that is, parallel composition, restriction and active substitutions) are called
frames?. To every extended process A we associate the frame ¢(A) obtained by
replacing all embedded plain processes with 0.

An evaluation context is an extended process with a hole not under a replica-
tion, a conditional, an input or an output.

Structural equivalence (=) is the smallest equivalence relation on extended
processes that is closed by a-conversion of names and variables, by application
of evaluation contexts and such that the standard structural rules for the null
process, parallel composition and restriction (such as associativity and commu-
tativity of |, commutativity and binding-operator-like behavior of v) together
with the following ones hold.

ve{M ) = ALIAS
M} A= {M/ FA{M .} SUBST
M y= M.} fM=pN REWRITE

If m represents the (possibly empty) set {ni1,...,nx}, we abbreviate by vn the
sequence vni.uns . ..vng. Every closed extended process A can be brought to

2 We see later in this section why we use the same name as for the notion defined in
section 2.
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the form vn.{™/,. }|...[{*/,,}|P by using structural equivalence, where P is
a plain closed process, [ > 0 and {n} C U, fn(M;). Hence the two definitions of
frames are equivalent up to structural equivalence on closed extended processes.
To see this we apply rule SUBST until all terms are ground (this is assured
by the fact that the considered extended processes are closed and the active
substitutions are cycle-free). Also, another consequence is that if A = B then
#(4) = o(B).

Two semantics can be considered for this calculus, defined by structural equiv-
alence and by internal reduction and labeled reduction, respectively. These se-
mantics lead to observational equivalence (which is standard and not recalled
here) and labeled bisimilarity relations. The two bisimilarity relations are
equal [1]. We use here the latter since it relies on static equivalence and it allows
to take implicitly into account the adversary, hence having the advantage of not
using quantification over contexts.

Internal reduction is the largest relation on extended processes closed by struc-
tural equivalence and application of evaluation contexts such that:

c(x).P|e(x).Q — P|Q COMM
if M =M then P else Q — P THEN
if M = N then P else @ — @ ELSE

for any ground terms M and N such that M #g N

On the other hand, labeled reduction is defined by the following rules.

c(z).P M), P{M,} 1IN c{u).P ) p OUT-ATOM
c(u) , o
A—> A u# ¢ OPEN-ATOM A= A U does. not  goOpE
vu. A L g vu. A %5 pu. Al occur in a
o I — @ / I — At
AB— A'|B A— A

where c is a name and u is a metavariable that ranges over names and variables,
and the condition (*) of the rule PAR is bv(a) Nfv(B) = bn(a) Nn(B) = 0.

Definition 2. Labeled bisimilarity (=) is the largest symmetric relation R on
closed extended processes such that AR B implies:

1. p(A) = ¢(B);

2. if A— A’ then B —* B’ and AR B’, for some B’;

3. if AS A" and fv(a) C dom(p(A)) and bn(a) Nfn(B) = then B —*5—*
B’ and A’R B’, for some B’.

We denote A= Bif A— Bor A B.

Definition 3. A frame ¢ is valid w.r.t. a process P if there is A such that
P =*A and ¢ = p(A).
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Definition 4. Let P be a closed plain process without variables as channels and
s a free name of P, but not a channel name. We say that s is syntactically
secret in P if, for every valid frame o w.r.t. P, s is not deducible from vs.p.
We say that s is strongly secret if for any closed terms M, M’ such that bn(P)N
(fa(M) Un(M")) = 0, P(Y) 0 P(M]).

Let M, (P) be the set of outputs of P, that is the set of terms m such that c(m)
is a message output construct for some channel name ¢ in P, and let M;(P) be
the set of operands of tests of P, where a test is a couple M = N occurring in
a conditional and its operands are M and N. Let M(P) = M,(P) U M(P) be
the set of messages of P. Examples are provided at the end of this section.

The following lemma intuitively states that any message contained in a valid
frame is an output instantiated by messages deduced from previous sent
messages.

Lemma 3. Let P be a closed plain process, and A be a closed extended process
such that P =* A. There are l > 0, an extended process B = vn.o;|Pg, where
Pg is some plain process, and 0 a substitution public w.r.t. n such that: A = B,
{n} C bn(P), for every operand of a test or an output T of Pp there is a message
To in P (a operand of a test or an output respectively), such that T = Tyboy,
and, o0; = ;1 U {Miei”i—l/yi}, for all 1 < i <1, where M; is an output in P, 0;
is a substitution public w.r.t. n and og is the empty substitution.

The proof is done by induction on the number of reductions in P =* A. Intu-
itively, B is obtained by applying the SUBST rule (from left to right) as much
as possible until there are no variables left in the plain process. Note that B is
unique up to the structural rules different from ALIAS, SUBST and REWRITE.
We say that ¢(B) is the standard frame w.r.t. A.

As a running example we consider the Yahalom protocol:

A= B: AN,

B=S5": B, {AyNabe}Kbs

S=A: {B, Kaln ]\/va7 Nb}Ka57 {A, Kab}Kbs
A= B: {A7 Kab}Kbs

In this protocol, two participants A and B wish to establish a shared key
K- The key is created by a trusted server S which shares the secret keys K
and Kps with A and B respectively. The protocol is modeled by the following
process.

Py(kab)zykas,kbs.(!PA)‘(!PB)‘(!VkI.Ps(k))|Ps(k‘ab) With
Py = vng.cla,ng).c(zq).[b = Upl.[nq = Uy, |.c{m2(2a))

Pr=c(zp).vny, ry.c{benc({(m(2s), (m2(25), o) b kvs, T0))-c(2).Ja = w1 (dec(z}, kps))]
Ps(x)=c(zs).vrs, rh.c{lenc((m1(2s), (T, Vo) KasTs), enc({Va, T)kbs, %))

S

and U, = 7r1(dec(771( ) )) Up, =m (7T2(772(dec(771(za)7 as))))
V, = m(dec(ma(2.). kpo)) Vi = ma(dec(ma (2, ) k).
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For this protocol the set of outputs and operands of tests are respectively:

Mo(Py) = {{a,na), za, m2(2a), (b, enc((m1(2p), (m2(2), 0)), kvs, 75)), 24,
enc({m1(2zs), (, Vi)Y, kas, 7s), enc({Va, ), ks, %) } and
M (Py) = {b,Up,ng,Up,,a,m1(dec(z, kss))}-

3.2 Owur Hypotheses

In what follows, we assume s to be the secret. As in the passive case, destruc-
tors above the secret must be forbidden. We also restrict ourself to processes with
ground terms in  key  position. We  consider the  process
P, = vk,r, v .(c{enc(s, k,r)) | c(2).c{enc(a,dec(z, k), 7'))). The name s in P; is
syntactically secret but not strongly secret. Indeed,

Py = vk, v, (vz.({"ER) Y | e(z) | e(2).clenc(a, dec(z, k), "))
— vk, 7,7 ({<&RTY 1 elenc(a, s, 7)) (COMM rule)
EVkTT( ({encskr/ encasr/ }|C< >))
vz'.e(z') vk,r, r. {enc(s r)/menc asr/ }dif Pl

and PJ does not preserve the strong secrecy of s (see the frame )5 of Section 2.3).

Without loss of generality with respect to cryptographic protocols, we assume
that terms occurring in processes are in normal form and that no destructor
appears above constructors. Indeed, terms like 71 (enc(m, k, 7)) are usually not
used to specify protocols. We also assume that tests do not contain constructors.
Indeed a test [(M1, Ma) = NJ can be rewritten as [M; = N1].[My = No] if N =
(N1, N3), and [M; = 71 (N)].[M2 = m2(N)] if N does not contain constructors,
and will never hold otherwise. Similar rewriting applies for encryption, except
for the test [enc(My, Ma, M3) = N] if N does not contain constructors. It can
be rewritten in [dec(N, M3) = M;] but this is not equivalent. However since
the randomness of encryption is not known to the agent, explicit tests on the
randomness should not occur in general.

This leads us to consider the following class of processes. But first, we say
that an occurrence genc of an encryption in a term T is an agent encryptions
w.r.t. a set of names n if ¢|,,. = enc(M, K, R) for some M, K, R and R € 7.

Definition 5. A process P is well-formed w.r.t. a name s if it is closed and if:

1. any occurrence of enc(M, K, R) in some term T € M(P) is an agent en-
cryption w.r.t. bn(P), and for any term T’ € M(P) and position p such that
T'|, =T there is a position q such that ¢.3 = p and T'|, = enc(M, K, R);

2. for every term enc(M, K, R) or dec(M, K) occurring in P, K is ground;

3. any operand of a test M € My is a name, a constant or has the form
mt(dec(...n"(dec(7" 1 (2), K})) ..., K1)), with 1 > 0, where the © are words
on {m,m} and z is a variable;

4. there are mno destructors above constructors, nor above s.
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Conditional tests should not test on s. For example, consider the process P; =
vk,r.(clenc(s,k,7)) | ¢(z).[dec(z,k) = a].c{ok)) where a is a non restricted
name. s in Pj3 is syntactically secret but not strongly secret. Indeed, P; —
vk,r.({e"<=R) 1 | [s = a].c{ok)). The process P3(%s) reduces further while
P5(Ys) does not. That is why we have to prevent hidden tests on s. Such tests
may occur nested in equality tests. For example, let

Py = vk,r,r1,7r2.(c{enc(s, k,7)) | clen
| e(2). [dec(dec(z k), k'
— P{ = vk,rr1,r2. ({957} e(en

c(enc(a, k', r2), k,71))

en
) = a].c(ok))
c(enc(a, k', 72), k,71))|[dec(s, k') = a].c{ok))

Then Py(e"<(@F"7") ) is not equivalent to Py("s), since the process P} (e"<(@*" "))
emits the message ok while P;("/s) does not. This relies on the fact that the de-
cryption dec(z, k) allows access to s in the test.

For the rest of the section we assume that zg is a new fixed variable.

To prevent hidden tests on the secret, we compute an over-approximation of
the ciphertexts that may contain the secret, by marking with a symbol x all
positions under which the secret may appear in clear.

We first introduce a function f,, that extracts the least encryption over s and
“clean” the pairing function above s. Formally, we define the partial function

Jep: T x N — T x N%.

fep(U,p) = (V,q) where V and ¢ are defined as follows: ¢ < p is the posi-
tion (if it exists) of the lowest encryption on the path p in U. If ¢ does not
exist or if p is not a maximal position in U, then f.,(U,p) =1. Otherwise,
V' is obtained from U|, by replacing all arguments of pairs that are not on
the path p with new variables. More precisely, let V' = Ul,. The subterm
V' must be of the form enc(Mj, My, M3) and p = q.i.q'. Then V is defined
by V' = enc(Mj, M3, M3) with M = M; for j # i and M = prune(M;,q’)
where prune is recursively defined by: prune((Ny, Na),1.r) = (prune(Ny,r), x..),
prune({Ny, N2),2.r) = (x,, prune(Na,r)) and prune(N,e) = N.
For example, fep(enc(enc({{a,b),c), ko, r2),k1,71),1.1.2) =(enc({ze, ¢), k2, 72), 1).
The function f. is the composition of the first projection with fc,. With the
function f., we can extract from the outputs of a protocol P the set of ciphertexts
where s appears in clear below the encryption.

Eo(P) = {fe(M[x]p,p) | M € Mo(P) A M|, =s}.

For example, & (Py) = {enc({z1, (x,21.2)), kas,Ts), enc({z1,x), kps, ;) }, where
Py is the process corresponding to the Yahalom protocol defined in previous
section.

However s may appear in other ciphertexts later on during the execution
of the protocol after decryptions and encryptions. Thus we also extract from
outputs the destructor parts (which may open encryptions). Namely, we define
the partial function

Jap: T x NY — T x N7
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fap(U,p) = (V,q) where V and ¢ are defined as follows: ¢ < p is the occurrence
of the highest destructor above p (if it exists). Let » < p be the occurrence of
the lowest decryption above p (if it exists). We have U|, = dec(Uy, Uz). Then
Us is replaced by the variable zg that is V = (U[dec(zo, U2)],)|q- If g or r do not
exist then fq,(U,p) =L.

For example, fg,(enc(m(dec(ma(y), k1)), k2, r2),1.1.1.1) = (71 (dec(zo, k1)), 1).

The function f; is the composition of the first projection with fg,. By ap-
plying the function f; to messages of a well-formed process P we always ob-
tain terms D of the form D = Di(...D,) where D; = 7(dec(zo, K;)) with
1 <i < n, K; are ground terms and 7' is a (possibly empty) sequence of projec-
tions Fjl(ﬂjZ("'(ﬂjl)"‘))‘

With the function fy4, we can extract from the outputs of a protocol P the
meaningful destructor part:

Do(P) =A{fa(M,p) | M € My(P) N p€ Pos,(M)}.

For example, Do(Py) = {mz(dec(zo, kbs)), m1(dec(zo, kps)) }-

We are now ready to mark (with x) all the positions where the secret might be
transmitted (thus tested). We also define inductively the sets &;(P) as follows.
For each element E of £ we can show that there is an unique term in normal
form denoted by E such that V(E) = {20} and E(F)| = x. For example, let
Ey=enc({z1, (, 22)), kas,Ts), then Ey = 71 (ma(dec(zg, kqs))). We define

E(P)={U |3IE € &(P),U <4 E and 3q € Pos(U), hy, = dec},
Eiv1(P) = {M/[X}q | IM € My(P),p € Pos, (M) s.t. fep(M,p) = (M',p'),
fap(M',p") = (D, q),p=7p"p", and Dy € £;(P)}.

For example,

g()(Py) = {7T1 (7T2(deC(Z0, kas))); 7T2(deC(Z(), kas))7 deC(Zo, ka5)7
7o (dec(zo, kbs)), dec(zo, kps) }

E1(Py) = {enc((z1, (21.2,%)), kas) }

51 (Py) = {7T2(7T2(deC(Z0, kas))); 7T2(deC(Z(), kas))7 deC(Zo, kas)}

and &;(Py) =0 for i > 2.

Note that £(P) = U;>0&;(P) is finite up-to renaming of the variables since
for every i > 1, every term M € &;(P), Pos(M) is included in the (finite) set of
positions occurring in terms of M.

We can now define an over-approximation of the set of tests that may be
applied over the secret.

M (P)={M € My(P) | 3p € Posy(M) s.t. D= Di(...Dy)=fap(M,p) #L,
and 3F € E(P)Ji s.t. D;=n"(dec(zp, K)),FE = enc(U, K, R) and x € D,;,(E)|}

For example, M$(Py) = {m(ma(ma(dec(m1(24), kas)))) }-

Definition 6. We say that a well-formed process P w.r.t. s does not test over s
if the following conditions are satisfied:
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1. for all E € E(P), for all D = D1(...D,,) € D,(P), if D; = w'(dec(zo), K)
and e = enc(U, K, R) and x € D;(E)| theni=1 and E £ D,
2. if M =N or N=M is atest of P and M € MZ(P) then N is a restricted

name.

Note that £(P) can be computed in polynomial time from P and that whether
P does not test over s is decidable. We show in the next section that the first
condition is sufficient to ensure that frames obtained from P are well-formed.
It ensures in particular that there are no destructors right above s. If some D;
cancels some encryption in some E and x € D;(F)| then all its destructors should
reduce in the normal form computation (otherwise some destructors (namely
projections from D;) remain above x). Also we have i = 1 since otherwise a D;
may have consumed the lowest encryption above x, thus the other decryption
may block, and again there would be destructors left above x.

The second condition requires that whenever a operand of a test M = N is
potentially dangerous (that is M or N € M3(P)) then the other operand should
be a restricted name.

3.3 Main Result

We are now ready to prove that syntactic secrecy is actually equivalent to strong
secrecy for protocols that are well-formed and do not test over the secret.

Theorem 2. Let P be well-formed process w.r.t. a free name s, which is not a
channel name, such that P does not test over s. We have vs.p ¥ s for any valid
frame @ w.r.t. P if and only if P(M/s) ~; P(M}y), for all ground terms M, M’
public w.r.t. bn(P).

Proof. Again, we only provide a sketch of the proof. Showing that strong se-
crecy implies syntactic secrecy is simple so we concentrate here on the converse
implication. Let P be well-formed process w.r.t. a free name s with no test over
s and assume that P is syntactically secret w.r.t. s.

Let M, M’ be to public terms w.r.t. bn(P). To prove that P(™/,) and P(M/,)
are labeled bisimilar, we need to show that each move of P(*/;) can be matched
by P(M7s) such that the corresponding frames are bisimilar (and conversely).
By hypothesis, P is syntactically secret w.r.t. s thus for any valid frame ¢
w.r.t. P, we have vs.p ¥ s. In order to apply our previous result in the passive
setting (Theorem 1), we need to show that all the valid frames are well-formed.
However, frames may now contain destructors in particular if the adversary sends
messages that contain destructors. Thus we first need to extend our definition
of well-formedness for frames.

Definition 7. We say that a frame ¢ = vn.o is extended well-formed w.r.¢.
s if for every occurrence qs of s in T|, where T = xo for some x € dom(c),
there exists an agent encryption w.r.t. n above s. Let Genc < qs the occurrence
of the lowest encryption. It must verify that hy|, = (), for all positions q with
qenc < q < qS’
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This definition ensures in particular that there is no destructor directly above s.

Theorem 1 can easily be generalized to extended well-formed frames.

Proposition 1. Let ¢ be an extended well-formed frame w.r.t. s, where s is a
free name in @. Then vs.o ¥ s iff (M) =~ p(M/s) for all M, M’ closed public
terms w.r.t. @.

The first step of the proof of Theorem 2 is to show that any frame produced
by the protocol is an extended well-formed frame. We actually prove directly a
stronger result, crucial in the proof: the secret s always occurs under an honest
encryption and this subterm is an instance of a term in £(P).

Lemma 4. Let P be a well-formed process with no test over s and ¢ = vn.o be
a valid frame w.r.t. P such that vs.p ¥ s. Consider the corresponding standard
frame vi.o = v {My,. | 1 <i <I}. For every i and every occurrence qs of s in
M;|, we have f.(M;],qs) = E[V/,] for some E € E(P) and some term W. In
addition vn.o;] is an extended well-formed frame w.r.t. s.

The lemma is proved by induction on ¢ and relies deeply on the construction
of £(P).

The second step of the proof consists in showing that any successful test in
the process P(M,) is also successful in P and thus in P(M/,).

Lemma 5. Let P be a well-formed process with no test over s, ¢ = vn.o a valid
frame for P such that vs.p ¥ s and 0 a public substitution. If Ty = T5 is a test
in P, then T100 (M) =g To0o(M/s) implies T100 =g Tefo.

This lemma is proved by case analysis, depending on whether 77,7 € M$ and
whether s occurs or not in fn(71600) and fn(T%60).

To prove that P(M/) and P(M/,) are labeled bisimilar, we introduce the
following relation R between extended processes defined as follows: AR B if
there is an extended process Ag and terms M, M’ such that P =* Ay, A =
Ao(Mg) and B = Ag(M/s). Then we show that R satisfies the three points
of the definition of labeled bisimilarity using in particular Lemma 5. Hence we
have also R C ~;. Since we have clearly that P(M )R P(MY,), it follows that
P(Ms) =i P(Ms).

3.4 Examples

We have seen in Section 3.2 that Py is a well-formed process w.r.t. ky;, and does
not test over kq,. Applying Theorem 2, if Py preserves the syntactic secrecy of
kap, we can deduce that the Yahalom protocol preserves the strong secrecy of
kap that is Py (M/y,,) ~1 Py(M/},,) for any public terms M, M’ w.r.t. bn(Py).
We did not formally prove that the Yahalom protocol preserves the syntactic
secrecy of kg, but this was done with several tools in slightly different settings
(e.g.[9,15]).

We have also verified that the Needham-Schroeder symmetric key protocol
and the Wide-Mouthed-Frog protocol are both well-formed process w.r.t. kqp



318 V. Cortier, M. Rusinowitch, and E. Zalinescu

and do not test over kqp, where kg, is the exchanged key. Again, the syntactic
secrecy of kqp has been proved by several tools (e.g. [9]) in slightly different
settings for both protocols. Using Theorem 2, we can deduce that they both
preserve the strong secrecy of kgp.
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Abstract. We introduce a new class of multiplicative proof nets, J-proof
nets, which are a typed version of Faggian and Maurel’s multiplicative
L-nets. In J-proof nets, we can characterize nets with different degrees
of sequentiality, by gradual insertion of sequentiality constraints. As a
byproduct, we obtain a simple proof of the sequentialisation theorem.

1 Introduction

Proof nets have been introduced by Girard [10] as an abstract representation of
linear logic proofs; this representation has two main interests: to provide a tool
for studying normalization, and to give a canonical representation of proofs.

In proof nets, information about the order in which the rules are performed is
reduced to a minimum, only two kinds of information about sequentiality being
kept: the one corresponding to the subformula trees and the one providing the
axiom links.

To retrieve a sequent calculus derivation from a proof net, we need to recover
more information about sequentiality. A sequentialization procedure gives in-
structions on how to introduce this sequentiality. Such a procedure usually relies
on splitting lemmas, which are proved introducing the notion of empire.

In [11], Girard, as part of the correctness criterion for proof nets with quan-
tifiers, introduces a more direct way to represent sequentiality constraints in
a proof net, by using jumps: a jump is an untyped edge between two nodes
(rules) a, b, which expresses a dependency relation: a precedes b (bottom-up) in
the sequentialisation. Recently, the idea of using jumps as a way to represent
sequentiality information has been developed by Faggian and Maurel ([8]) in the
abstract context of the L-nets, a parallel variant of Ludics designs.

Here we define a representation of proofs where objects with different degree
of parallelism live together, in the spirit of [6,5]; for this purpose we introduce a
new class of multiplicative proof nets, J-proof nets, that can be considered as a
typed, concrete, version of multiplicative L-nets.
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We prove that by gradual insertion of jumps in a J-proof net, one can move
in a continuum from J-proof nets of minimal sequentiality to J-proof nets of
maximal sequentiality. The former are proof nets in the usual sense, the latter
directly correspond to sequent calculus proofs.

In this way, we realize, for the multiplicative fragment of Linear Logic, a
proposal put forward by Girard.

Moreover, our technique results into a very simple proof of the sequential-
isation theorem. Our main technical result is the Arborisation Lemma, which
provides the way to add jumps to a J-proof net up to a maximum.

2 Focalization, MLL and HS

In the first part of the paper we consider the multiplicative fragment of the
hypersequentialised calculus HS [12,13,9], which is a focussing version of Multi-
plicative Linear Logic (MLL), as we explain below.

We define proof nets for HS, and then introduce J-proof nets. The strong
geometrical properties of HS will allow us to uncover a simple sequentialisation
technique for the calculus. We will then be able to apply the same technique to
MLL.

2.1 Focalization and MLL

It has been proved by Andreoli [2] that the sequent calculus of Linear Logic en-
joys a property called focalization: a proof 7 of a sequent - I" can be transformed
into a proof 7/°¢ of the same sequent which satisfies a specific discipline, called
focussing discipline, which we describe below.

Here we stress that 7/°¢ is obtained from 7 solely by permutation of the rules.
As a consequence, if we restrict our attention to MLL, there is no difference in
the proof net of 7 and 77°¢. In fact, we have that:

1. 7 and 7/°¢ are equivalent modulo permutation of the rules;

2. the proof net respectively associated to 7 and w/°¢ is the same;

3. an MLL proof net has always a focussing proof among its possible sequen-
tialisations.

(2.) is an immediate consequence of (1.), while (3.) is actually the easier way to
prove focalization for MLL (as first observed by Andreoli and Maieli in [1]). We
revise this below.

Focalization relies on a distinction of Linear Logic connectives into two fami-
lies, which are as follows.
Positive connectives: ®,®,1,0.
Negative connectives: 9,8, L, T.

From now on, we only consider the multiplicative fragment of Linear logic;
the formulas are hence as follows
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Fu=A|At | FP9F|F®F

where A, AL are atoms.

To understand focalization, it helps to think of MLL proof nets rather than
sequent calculus proofs.

Let us partition the nodes which are respectively typed by ® and ’® into
maximal trees of nodes with the same type (resp. positive and negative trees). We
assume that there is at most one negative node which is conclusion of the proof
net (otherwise, we put together all negative conclusions by making use of ).

Consider now sequentialization. That is, we associate a sequent calculus proof
to a proof-net; to do this, essentially one has to “find a last rule”. The key result
in proof-net theory is that this is always possible; a ® rule which can be removed
from the proof net (and taken as the last rule in the sequent calculus derivation)
is called a splitting ®. Let us now choose a specific sequentialization strategy,
based on the notion of hereditarely splitting ®, whose existence was proved in

([7)-

— It R has a negative conclusion, we choose that conclusion as last rule of the
sequent calculus proof, and remove it from the proof net. We persist until
the whole negative tree has been removed.

— If R has only positive conclusions, we choose an hereditarely splitting ®. This
means that we can choose a tree of ®, and persistently remove all the ® until
the whole positive tree has been removed.

What we obtain is a sequent calculus derivation whose bottom-up construction
satisfies the focussing discipline below.

Definition 1 (Focussing proofs). A sequent calculus proof is called focussing
if its bottom-up construction satisfies the following discipline:

— First keep decomposing a negative formula (if any) and its subformulas, until
one get to atoms or positive subformulas;

— choose a positive formula, and keep decomposing it up to atoms or negative
subformulas.

2.2 Synthetic Connectives: HS

Focalization implies that we can consider a maximal tree of connectives of the
same polarity (positive or negative) as a single n-ary connective, called a syn-
thetic connective, which can be introduced by a specific rule.

In [12] Girard has introduced a new calculus, HS, which uses focalization
and synthetic connectives to force a “normal” form for MALL sequent calculus
proofs.

HS introduces a polarization on the atoms. This constraint correspond to a
hidden decomposition of the atoms, and does not introduce essential differences,
while making the geometrical structure strong and clear. For this reason, we will
first work with HS; in Section 8 we will then remove the polarization.
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3 From Proof Nets to J-Proof Nets

3.1 MHS Sequent Calculus

We indicate by MHS the multiplicative fragment of HS.

Formulas. The formulas of MHS are as follows:

N = At | »(P,...,P)
P:= A |®N,...,N)

where A denotes a positive atom.
Rules. The rules for proving sequents are the following

[P FA FL
FI, A
CIPL P
}_I;)g(Pla"'aPn)

(Ax) (Cut)

A, AL
F Iy, Ni...F T, N,

}_Flv'”a-l—"nv ®(N177Nn)(+)

FIT FA

eroa M)

where all context I, A, ... only contain P formulas.

Remark 1. The calculus admits a unary 7@ (resp.®) which is a negative (resp.
positive) polarity inverter [13,14] This polarity inverter is usually called a nega-
tive (resp. positive) Shift and denoted by T (resp. ).

Skeleton of a Sequent Calculus Proof. Let us give a first intuition of our
approach. Consider a cut-free proof 7, and type each rule application with its
active formulas. Observe that if we forget everything but the types, we have a
tree, where the nodes are MHS formulas, and the leaves have the form {4, AL}.
We can think of this tree as the skeleton of the sequent calculus derivation.

Here we do not push this intuition further, but it is possible to characterizes
the trees which correspond to sequent calculus derivations, in the spirit of [13],
and extend the approach also to the cut rule.

3.2 MHS Proof-Nets

In this section we define proof-nets for MHS.
Proof-nets provide a graph representation of proofs. Each node represents a
rule of the sequent calculus, and it is only concerned with the active formulas.

Definition 2 (Typed structure). We call typed structure a directed acyclic
graph where:
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— the edges are possibly typed with MHS formulas
— the nodes (also called links) are typed either with a MHS formula or with a
pair of atoms {A, A+}.

Given a link, the incoming edges are called the premises of the link, and the
outgoing edges are called conclusions of the link. We call positive (resp. negative)
a link of type (N1, ..., Ny) (resp. 9(Py,...,P,)).

We admit pending edges. An edge which has no target is called a conclusion
of the structure, and its source is called a terminal link.

Definition 3 (Proof structure). A proof structure is a typed structure where
the nodes are typed as the conclusions, and the typing satisfies the following
constraints:

NEE W e/

Moreover, we ask that there is at most one negative terminal link.

Definition 4 (Switching path and cycle). Given a proof-structure, a switch-
ing path is an unoriented path which never uses two premises of the same neg-
ative link.

A switching cycle is a switching path which is a cycle.

Definition 5 (Proof-nets). A proof structure R is called a proof-net if it has
no switching cycles.

Proposition 1. Given a sequent calculus proof m of MHS, we can associate to
it a proof net w*.

Proof. We proceed in the standard way.

Definition 6 (Sequentialization). A proof structure R is sequentialisable iff
there exists a proof m of MHS (that we call a sequentialisation of R) s.t. 7" = R.

3.3 J-Proof Nets
We enrich proof-nets with jumps, which will allow us to graduate sequentiality.

Definition 7 (J-proof structure)

A J-proof structure (jumped proof structure) is a proof structure added with
untyped edges called jumps, which connect a positive to a negative link (the
orientation is from positive to negative).
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Definition 8 (Switching path and cycle). Given a J-proof structure, a
switching path is an unoriented path which never uses two premises of the same
negative link (a jump is also a premise of its target); a switching cycle is a
switching path which is a cycle.

Definition 9 (J-Proof nets). 4 J-proof structure R is called a J- proof-net if
it has no switching cycles.

In Section A we sketch normalization of J-proof nets.

A proof-net is a special case of J-proof net. In the next section we will show
that a sequent calculus proof (or rather its skeleton) can also be seen as a
special case of J-proof net. This will allow us to define a new technique of
sequentialization.

Note. From now on, we only consider J-proof structures without cut links.
The cut can be smoothly dealt with essentially by identifying the cut node of
premises F, F- with the node of which the positive formula is conclusion.

3.4 Partial Order Associated to a J-Proof Net

Since a J-proof net R is a d.a.g., we associate to R in the standard way a strict
partial order < on the typed nodes.

We recall that we can represent a strict partial order as a d.a.g., where we
have an edge a « b whenever a <; b (i.e. a < b, and there is no ¢ such that
a < c and ¢ < b.) Conversely (the transitive closure of) a d.a.g. G induces a
strict partial order < on the nodes of G.

We call skeleton of a directed graph G, denoted Sk(G), the minimal graph
whose transitive closure is the same as that of G. An edge a < b is transitive if
there is no node ¢ such that a < ¢ and ¢ < b.

With a slight abuse, we often identify < and the skeleton of G.

Given a J-proof net R, we call minimal (resp. mazimal) a link ¢ of R which
is minimal in <p, i.e. there is no node b such that b < ¢ (resp. ¢ < b). Notice
that, because of jumps, a node can be terminal, without being minimal.

We call predecessor of a node ¢, a node which immediately precedes c¢. Oth-
erwise, we speak of hereditary predecessor. Similarly for the successor.

A strict order r on a set A is arborescent when each element has a unique
predecessor.

If the order < associated to a J-proof net R is arborescent, the skeleton of
R is a forest.

Finally, we observe that

Remark 2. Let R be a J-proof net.

— SK(R) is obtained from R by removing the edges which are transitive.
— Only an edge which goes from positive to negative can be transitive.
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4 J-Proof Nets and Sequent Calculus

In the next section we will induce a sequentialisation of a proof net by adding
jumps. Let us start with an example. Consider the proof-net below. We add a
jump from the positive to the negative link, and consider the order induced on
the links. We obtain a tree, and such a tree is the skeleton of a sequent calculus

proof.
@
e
At Bt A B
=
®(AJ;BJ-) @(A,B)
—® ®  ®
® N\ /
A gt A B @

Lot T .
Lol
®(ASB) ¥ (AB)

To sequentialize a J-proof net, we will then consider the order associated to a
proof net as a directed acyclic graph, and add to it enough jumps, to make the
order arborescent, and hence proof-like (Lemma 1).

Let us show that if the order on the nodes of a J-proof net is arborescent, it
corresponds to a sequent calculus derivation. (A proof of this is given, in a more
general setting and with full details, in [5].)

Proposition 2. Let R be a J-proof net such that <g is arborescent.

(i) We can associate to R a proof w!t in the sequent calculus MHS, possibly
making use of the Mix Rule.

(i1) Moreover, if the order has a minimum and each negative link has a unique
successor (i.e. if the skeleton is a tree which only branches on positive nodes)
then ©f does not use the Miz rule.

Proof. The proof is by induction on the number of links. For brevity, we show
directly (ii).

1. n = 1: The only link of R is an Axiom link of conclusions A, A*, to which
we associate A Ai;
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2. n > 1: we reason by cases, depending on the type of the minimal link ¢ of
R.
— @(Py...P,) :let <p be the order obtained by erasing c. By induction we

/

associate a proof ™ to <g/. T is i , whose last rule is
L ®ic(1.my (Pi)

a—ruleon Py,..., P, ( Py,..., P, are conclusions of ' by construction);
- ®(N1,...,Ny) :let <g,,...,=<pg, be the n orders obtained by erasing c.

By induction we associate a proof 7 to each <pg, ; 7<% is

/ /
7T1 e 7Tn .
whose last rule is a + rule on Ny,..., N,
FI,..., 15, ®z€{1n}N’L ’ o
(by construction, N, ..., N, are respectively among the conclusions of
/ /
Tyeeny T )

5 Sequentialization

Definition 10 (Saturated J-proof net). A J-proof net R is saturated if for
every negative link n and for every positive link p, adding a jump between n and
p creates a switching cycle or doesn’t increase the order <g. Given a J-proof net
R, a saturation R’ of R is a saturated J-proof net obtained from R by adding
Jumps.

Our sequentialisation argument is as follows:

— If the order <y associated to a J-proof net R is arborescent, we can associate
to R a proof mf in the sequent calculus.

— The order associated to a saturated J-proof net is arborescent.

— Any J-proof net can be saturated.

Lemma 1 (Arborisation). Let R be a J-proof net. If R is saturated then <g
is arborescent. Any J-proof net can be saturated.

Proof. We prove that if <g is not arborescent, then there exists a negative link ¢
and a positive link b s.t. adding a jump between b and ¢ doesn’t create switching
cycles and makes the order increase.

If <p is not arborescent, then in <p there exists a link a with two imme-
diate predecessors b and ¢ (they are incomparable). Observe that b and ¢ are
immediately below a in Sk(R) and also in R.

If @ is an Axiom link, then necessarily b and ¢ are respectively a positive link
and a negative link; we draw a jump between b and ¢, this doesn’t create a cycle
and the order increases.

Otherwise, a is a positive link, and b and ¢ are two negative links; we distin-
guish two cases:

1. either b or ¢ is terminal in R. Let assume that b is terminal; then ¢ cannot be
terminal ( by definition of jumped proof structure), and there is a positive
link ¢’ which immediately precedes c. If we add a jump between b and ¢/,
this doesn’t create cycles and the order increases.
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/\ /\

bé)-\

‘ s

C

2. Neither b or ¢ are terminal in R. Each of them has an immediate positive
predecessor, respectively b’ and ¢’. Suppose that adding a jump from ¥ to
¢ creates a cycle: we show that adding a jump from ¢’ to b cannot create a
cycle. If adding to R the jump b — c creates a cycle, that means that there
is in R a switching path r = (¢, c....b); if adding the jump ¢’ — b creates a
cycle then there is a switching path ' = (b,b'...c) . Assume that r and ' are
disjoint: we exhibit a switching cycle in R {(c¢,c’...b,V'...c) by concatenation
of r and r’.This contradicts the fact that R is a proof net.

’
C \ ‘ < k ! \\ ’
T T \\ . / \ , . ‘\‘ II C
R I s X
b’ C’ \‘ '_b ’: =
Vol l l D
Y s

v

-

Assume that r and r’ are not disjoint. Let x be the first node (starting from
b ) where r and ' meets. Observe that = must be negative (otherwise there
would be a cycle). Each path uses one of the premises, and the conclusion
(hence the path meets also in the node below ). From the fact that x is the
first point starting from b where r and ' meet it follows that: (i) r’ enters
in  from one of the premises, and exits from the conclusion; (ii) each of r
and " must use a different premise of x. Then we distinguish two cases:

- r enters z from one of the premises; we build a switching cycle taking the
sub path (b, ....,z) of 7" and the sub path (z,....,b) of r.

- r enters « from the conclusion; then we build a switching cycle composing
the sub path of 7 {c, ..., x) , the reversed sub path of r’ (x, ...,b) and the path
(b, a,c).
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6 Properties

In this section we deal with three standard results one usually has on proof nets.
In 6.1 we get rid of the Mix rule, in 6.2 we give an immediate proof of the usual
splitting Lemma, in 6.3 we prove that the sequentialization we have defined is
correct w.r.t. Definition 6.

The novelty here is the argument. When adding jumps, we gradually transform
the skeleton of a graph into a tree. We observe that some properties are invariant
under the transformation we consider: adding jumps and removing transitive
edges. Our argument is always reduced to simple observations on the final tree
(the skeleton of R”7), and on the fact that each elementary graph transformation
preserves some properties of the nodes.

6.1 Connectness

Lemma 2. (i) Two nodes are connected in a d.a.g. G (i.e. there exists a se-
quence of connected edges between the two nodes) iff they are connected in the
skeleton of G.

(i) If two node are connected in R, then they are connected in R.

(iii) If R is connected as a graph so are R’ and Sk(R”).

Proof. Immediate, because adding edges, or deleting transitive edges, preserves
connectness.

We now deal with a more peculiar notion of connectness, to get rid of the mix
rule, as is standard in the theory of proof-nets.

Definition 11 (Correction graph). Given a typed graph R, we call switching
a function s which associates to every mnegative node of R one of its premises
(again, jumps also are premises of their target); a correction graph s(R) is the
graph obtained by erasing for every negative node of R the premises not chosen
by s.

Definition 12 (s-connected). A J-proof net R is s-connected if given a switch-
ing of R, its correction graph is connected.

Remark 3. We only need to check a single switching. The condition that a proof
structure has not switching cycles is equivalent to the condition that all correc-
tion graphs are acyclic.

A simple graph argument shows that assuming that all correction graphs are
acyclic, if for a switching s the correction graph s(R) is connected, then for all
other switching s’ s'(R) is connected.

Proposition 3. If R is s-connected, then its skeleton is a tree which only bran-
ches on positive nodes (i.e., each negative link has a unique successor).

Proof. First we observe that:

— any switching of R is a switching of R’, producing the same correction graph.
Hence if R is s-connected, R” is s-connected.
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— Given a J-proof net G, any switching of its skeleton is also a switching of G,
because the skeleton is obtained by erasing the edges which are transitive.
A transitive edge can be premise only of a negative node.

As a consequence, any switching of Sk(R”) induce a correction graph which is
connected. However, Sk(R”’) is a tree, so we cannot erase any edge. Hence each
negative link has a unique premise, and the graph has only one switching.

From Proposition 2, it follows that

Proposition 4. If R is s-connected, and R’ a saturation, we can associate to
J
it a proof ™" which does not use the Mix rule.

6.2 Splitting
Observe that a minimal link of S is a root of its skeleton.

Definition 13 (Splitting). Let R be a typed structure, ¢ a positive link, and
b1,...,by, the nodes which are immediately above c¢ (the premises of ¢ have the
same type as by,...,b,). We say that ¢ is splitting for R if it is terminal, and
removing ¢ there is mo more connection (i.e. no sequence of connected edges)
between any two of the nodes b;.

Remark 4. Assume that R is a connected graph. It is immediate that if R is a
J-proof net whose terminal links are all positive, the removal of ¢ splits R into n
disjoint connected components Ry, ..., R,, and each component is a J-proof net.

Lemma 3 (Splitting lemma). Let R be a J-proof net whose terminal nodes
are all positive, and R’ a saturation; the minimal link ¢ of R’ (i.e. the root of
Sk(R”)) is splitting for R.

Proof. Observe that c is obviously splitting in the skeleton of R”, because c is
the root of a tree. Hence it is splitting in R”, as a consequence of Lemma 2, (i).
Similarly, ¢ must be splitting in R, as a consequence of Lemma 2, (ii).

6.3 Sequentialisation Is Correct

Proposition 5. Let R be a J-proof-net. For any saturation R’ of R, if m = R’

then (m)* = R.

Proof. For brevity, we assume that R is s-connected. Hence, the skeleton of R’
a tree. The proof is by induction on the number of links of R.

1. n = 1: then R consists of a single Axiom link, and 7 is the corresponding
Axiom rule.

2. n > 1. We consider the minimal link k of R”.
Observe that the last rule of 7 is the rule which correspond to the root k. Let
us call 7y, ..., m, the premises of the rule, and R{,..., R’ the subnets ob-
tained from R’ by removing k. By definition, each 7; is the proof associated
to an R;.
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— Assume k is positive. By the splitting lemma, & is splitting in R.

R{ ..., R] are obviously saturated (we have not erased any jump) so by
induction hypothesis on R; ..., R, which are the n sub nets obtained by
removing k from R, (r%)* = Ry,...,(7%")* = R,; by composing all

the 77 with the rule corresponding to k , we get a proof which is equal
to 78" and we find that R = (7%”)*.

— Assume k is negative. Similarly, we remove k from R and apply induction
to obtain the conclusion.

7 Partial Sequentialisation and Desequentialization

The approach we have presented is well suited for partially introducing or re-
moving sequentiality, by adding (deleting) a number of jumps.

Actually, it would be straightforward to associate to a sequent calculus proof
7 a saturated J-proof net. In this way, to m we could associate either a maximal
sequential or a maximal parallel J-proof net, on the lines of [6,5].

Given a J-proof net R, let us indicate with Jump(R) (DeJump(R)) a J-proof
net resulting from (non deterministically) introducing (eliminating) a number of
jumps in such a way that every time the order increases (decreases).

The following result apply to a J-proof net of any degree of sequentiality.

Theorem 1 (Partial sequentialisation/desequentialization). Let R, R’ be
J-proof nets.
If R = Jump(R) then there exists DeJump(R') such that DeJump(R')

=R.
If R = Dejump(R) then there exists Jump(R') such that Jump(R') = R.

Proof. Immediate, since we can reverse any step...

8 MLL

Our sequentialisation proof can now be extended to MLL. It is straightforward
to translate an MLL proof net into MHS, however, here we prefer a more direct
approach (where the translation is implicit). We proceed in two steps, first by
introducing a variant of Andreoli’s focussing calculus based on synthetic connec-
tives, and then working directly with MLL.

8.1 MHSt

The polarization of HS makes the geometrical structure clean and clear. We now
eliminate the polarization constraints, still keeping the calculus focussing.
We call this calculus MHS". The grammar of the formulas is the following:

N = A| A+ | »(P,...,P)
P:=A| At | ®(N,...,N)
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Remark 5. Observe that now we have all the formulas of MLL, modulo cluster-
ing /declustering into synthetic connectives. For example, A9 A~ is a formula of
MHS".

The sequent calculus rules are (formally) the same as those of MHS. Observe
however that now we consider negative atoms also as P-formulas. This means
that the contexts I', 4, ... may also contain negative atoms. Moreover, a negative
atom can appear in the premises of a negative rule, and a positive atom can
appear in the premises of a positive rule.

Proof nets. We modify the Axiom link, by introducing a (formal) decomposi-
tion of the atoms. Any atom A can be decomposed into AV, of opposite 